Skip to main content
Log in

Mechanisms Underlying the Virulence and Intestinal Colonization of the Vibrio alginolyticus HY9901 DctP Protein with Proteomic Analysis

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Vibrio alginolyticus as a common pathogen infecting humans and marine animals has become a severe threat to the global mariculture industry. Using liquid chromatography and tandem-mass spectrometry (LC–MS/MS) analysis, comparative proteomics between dctP-deletion (ΔdctP) strain and wild-type V. alginolyticus HY9901 was profiled, and total of 547 differentially expressed proteins (DEPs) were identified. In these DEPs, 310 proteins were upregulated and 237 proteins were downregulated. Comparative proteomics of ΔdctP and wild-type strains identified some important regulated factors of colonization and virulent proteins. The regulated factors of bacterial colonization mainly included LuxR and ToxR (biofilm formation), flagellins (FlaB and FlrB), mannose-sensitive hemagglutinin (MshA) pilus, various substrates of the type II secretion system (EpsD, SecD and SecF) and type IV secretion system (ClpV), quorum sensing systems (LuxR homologous ValR), the virulent heat shock proteins (IbpA and YbeY), lipopolysaccharide LptE, outer membrane proteins (OmpU and TolC), glutamate synthases (GltB and GltD), oligopeptide permease (OppA) and siderophores (IrgA). In our previous study, biological characteristics (swarming motility, biofilm formation, cell adhesion and colonized ability) were significantly decreased and LD50 was significantly increased of ΔdctP compared to wide-type. Taken together, these results suggest that DctP protein plays an important role in controlling biological characteristics through DEPs in this study to finally affecting intestinal colonization and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the authors, further inquiries can be directed to the corresponding authors.

REFERENCES

  1. Yang, W., Ding, D., Zhang, C., Zhang, C., Zhou, J., and Su, X., Proteome Sci., 2015, vol. 13, no. 19. https://doi.org/10.1186/s12953-015-0075-4

  2. Morris, J.G. Jr. and Black, R.E., N. Engl. J. Med., 1985, vol. 312, no. 6, pp. 343-350. https://doi.org/10.1056/nejm198502073120604

    Article  PubMed  Google Scholar 

  3. Jacobs Slifka, K.M., Newton, A.E., and Mahon, B.E., Epidemiol. Infect., 2017, vol. 145, no. 7, pp. 1491–1499. https://doi.org/10.1017/S0950268817000140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rhie, M.N., Park, B., Ko, H.J., Choi, I.G., and Kim, O.B., MicrobiologyOpen, 2018, vol. 7, no. 3, p. e00565. https://doi.org/10.1002/mbo3.565

    Article  CAS  PubMed  Google Scholar 

  5. Walmsley, A.R., Shaw, J.G., and Kelly, D.J., Biochemistry, 1992, vol. 31, no. 45, pp. 11175–11181. https://doi.org/10.1021/bi00160a031

    Article  CAS  PubMed  Google Scholar 

  6. Cai, S., Cheng, H., Pang, H., Jian, J., and Wu, Z., Vet. Microbiol., 2018, vol. 213, pp. 35–41. https://doi.org/10.1016/j.vetmic.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  7. Hughes, K.J., Everiss, K.D., Kovach, M.E., and Peterson, K.M., Gene, 1995, vol. 156, no. 1, pp. 59–61. https://doi.org/10.1016/0378-1119(95)00054-a

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y., Tan, H., Yang, S., Huang, Y., Cai, S., Jian, J., et al., J. Fish Dis., 2022, vol. 45, no. 3, pp. 421–434. https://doi.org/10.1111/jfd.13571

    Article  CAS  PubMed  Google Scholar 

  9. Yildiz, F.H. and Visick, K.L., Trends Microbiol., 2009, vol. 17, no. 3, pp. 109–118. https://doi.org/10.1016/j.tim.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luo, G., Huang, L., Su, Y., Qin, Y., Xu, X., Zhao, L., et al., Emerg. Microbes Infect., 2016, vol. 5, no. 8, p. e85. https://doi.org/10.1038/emi.2016.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, S.Y., Thanh, X.T., Jeong, K., Kim, S.B.K., Pan, S.O., Jung, C.H., et al., Infect. Immun., 2014, vol. 82, no. 1, pp. 29–42. https://doi.org/10.1128/IAI.00654-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Echazarreta, M.A., Kepple, J.L., Yen, L-H., Chen, Y., and Klose, K.E., J. Bacteriol., 2018, vol. 200, no. 15, p. e00029-18. https://doi.org/10.1128/JB.000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Floyd, K.A., Lee, C.K., Xian, W., Nametalla, M., Valentine, A., Crair, B., et al., Nat. Commun., 2020, vol.11, no. 1, p. 1549. https://doi.org/10.1038/s41467-020-15331-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones, C.J., Utada, A., Davis, K.R., Thongsomboon, W., Sanchez, D.Z., Banakar, V., et al., PLoS Pathog., 2015, vol. 11, no. 10, p. e1005068. https://doi.org/10.1371/journal.ppat.1005068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watnick, P.I., Fullner, K.J., and Kolter, R., J. Bacteriol., 1999, vol. 181, no. 11, pp. 3606–3609. https://doi.org/10.1128/jb.181.11.3606-3609.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Boyle, N., Houeix, B., Kilcoyne, M., Joshi, L., and Boyd, A., Int. J. Med. Microbiol., 2013, vol. 303, no. 8, pp. 563–573. https://doi.org/10.1016/j.ijmm.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  17. Davis, B.M., Lawson, E.H., Sandkvist, M., Ali, A., So zhamannan, S., and Waldor, M.K., Science, 2000, vol. 288, no. 5464, pp. 333–335. https://doi.org/10.1126/science.288.5464.333

    Article  CAS  PubMed  Google Scholar 

  18. Hand, N.J., Klein, R., Laskewitz, A., and Pohlschröder, M., J. Bacteriol., 2006, vol. 188, no. 4, pp. 1251–1259. https://doi.org/10.1128/jb.188.4.1251-1259.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ali, A., Johnson, J.A., Franco, A.A., Metzger, D.J., Connell, T.D., Morris, J.G., et al., Infect. Immun., 2000, vol. 68, no. 4, pp. 1967–1974. https://doi.org/10.1128/IAI.68.4.1967-1974.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cornelis, G.R., Nat. Rev. Microbiol., 2006, vol. 4, no. 11, pp. 811–825. https://doi.org/10.1038/nrmicro1526

    Article  CAS  PubMed  Google Scholar 

  21. Luo, G., Xu, X., Zhao, L., Qin, Y., Huang, L., Su, Y., et al., J. Fish. Dis., 2019, vol. 42, no. 7, pp. 991–1000. https://doi.org/10.1111/jfd.13001

    Article  CAS  PubMed  Google Scholar 

  22. Basler, M., Pilhofer, M., Henderson, G.P., Jensen, G.J., and Mekalanos, J.J., Nature, 2012, vol. 483, no. 7388, pp. 182–186. https://doi.org/10.1038/nature10846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bolhassani, A. and Agi, E., Clin. Chim. Acta, 2019, vol. 498, pp. 90–100. https://doi.org/10.1016/j.cca.2019.08.015

    Article  CAS  PubMed  Google Scholar 

  24. Kitagawa, M., Matsumura, Y., and Tsuchido, T., FEMS Microbiol. Lett., 2000, vol. 184, no. 2, pp. 165–171. https://doi.org/10.1111/j.1574-6968.2000.tb09009.x

    Article  CAS  PubMed  Google Scholar 

  25. Kuczynska-Wisnik, D., Matuszewska, E., and Laskowska, E., Microbiology (Reading), 2010, vol. 156, no. Pt 1, pp. 148–157. https://doi.org/10.1099/mic.0.032334-0

  26. Vercruysse, M., Kohrer, C., Davies, B.W., Arnold, M.F.F., Mekalanos, J.J., RajBhandary, U.L., et al., PLoS Pathog., 2014, vol. 10, no. 6, p. e1004175. https://doi.org/10.1371/journal.ppat.1004175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xia, Y., Xu, C., Wang, D., Weng, Y., Jin, Y., Bai, F., et al., Appl. Environ. Microbiol., 2020, vol. 87, no. 5, p. e02171-20. https://doi.org/10.1128/AEM.02171-20

    Article  PubMed  Google Scholar 

  28. Nikaido, H., Microbiol. Mol. Biol. Rev., 2003, vol. 67, no. 4, pp. 593–656. https://doi.org/10.1128/mmbr.67.4.593-656.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bacterial Lipopolysaccharides. Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells, Knirel, Y.A. and Valvano, M.A., Eds., Vienna: Springer, 2011, pp. 311–337. https://doi.org/10.1007/978-3-7091-0733-1_10

  30. Wu, T., McCandlish, A.C., Gronenberg, L.S., Chng, S., Silhavy, T.J., and Kahne, D., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 31, pp. 11754–11759. https://doi.org/10.1073/pnas.0604744103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Withey, J.H. and DiRita, V.J., Mol. Microbiol., 2006, vol. 59, no. 6, pp. 1779–1789. https://doi.org/10.1111/j.1365-2958.2006.05053.x

    Article  CAS  PubMed  Google Scholar 

  32. Provenzano, D., and Klose, K.E., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 18, pp. 10220–10224. https://doi.org/10.1073/pnas.170219997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merrell, D.S., Bailey, C., Kaper, J.B., and Camilli, A., J. Bacteriol., 2001, vol. 183, no. 9, pp. 2746–2754. https://doi.org/10.1128/JB.183.9.2746-2754.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duperthuy, M., Schmitt, P., Garzon, E., Caro, A., Rosa, R.D., Roux, F.L., et al., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 7, pp. 2993–2998. https://doi.org/10.1073/pnas.1015326108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goo, S.Y., Lee, H.J., Kim, W.H., Han, K., Park, D., Lee, H., et al., Infect. Immun., 2006, vol. 74, no. 10, pp. 5586–5594. https://doi.org/10.1128/IAI.00171-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weng, Y., Fields, E.G., Bina, T.F., Budnick, J.A., Kunkle, D.E., Bina, X.R., et al., Infect. Immun., 2021, vol. 89, no. 10, p. e0024221. https://doi.org/10.1128/iai.00242-21

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, Z., Dong, C., Weng, S., and He, J., Fish Shellfish Immunol., 2019, vol. 86, pp. 143–151. https://doi.org/10.1016/j.fsi.2018.11.037

    Article  CAS  PubMed  Google Scholar 

  38. Lee, E.M., Ahn, S.H., Park, J.H., Lee, J.H., Ahn, S.C., and Kong, I.S., FEMS Microbiol. Lett., 2004, vol. 240, no. 1, pp. 21–30. https://doi.org/10.1016/j.femsle.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  39. Wu, T.K., Wang, Y.K., Chen, Y.C., Feng, J.M., Liu, Y.H., and Wang, T.Y., J. Bacteriol., 2007, vol. 189, no. 22, pp. 8215–8223. https://doi.org/10.1128/JB.01039-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seliger, S.S., Mey, A.R., Valle, A.M., and Payne, S.M., Mol. Microbiol., 2001, vol. 39, no. 3, pp. 801–812. https://doi.org/10.1046/j.1365-2958.2001.02273.x

    Article  CAS  PubMed  Google Scholar 

  41. Leon-Sicairos, N., Angulo-Zamudio, U.A., de La Garza, M., Velázquez-Román, J., Flores-Villaseñor, H.M., and Canizalez-Román, A., Front. Microbiol., 2015, vol. 6, p. 702. https://doi.org/10.3389/fmicb.2015.00702

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang, Y., Suo, Y., Shi, C., Szlavik, J., Shi, X.M., and Knøchel, S., Int. J. Food Microbiol., 2013, vol. 163, no. 2–3, pp. 223–230. https://doi.org/10.1016/j.ijfoodmicro.2013.02.023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Shenzhen City (JCYJ20190813114409506 and JCYJ20210324130003009) and the Natural Science Foundation of Guangdong Province (no. 2021A1515010532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Cai.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

PUBLISHER’S NOTE. All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.L., Wu, F., Huang, Y.C. et al. Mechanisms Underlying the Virulence and Intestinal Colonization of the Vibrio alginolyticus HY9901 DctP Protein with Proteomic Analysis. Appl Biochem Microbiol 59, 646–658 (2023). https://doi.org/10.1134/S0003683823050198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823050198

Keywords:

Navigation