Skip to main content
Log in

Estimation of the Segregation in a High Carbon Cast Steel by Thermoelectric Power Means

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

This research study proposes the hot-cold tip thermoelectric power (TEP) method to estimate alloying elements segregation and the microstructure variation of high carbon steel cast in a mold. Optical emission spectrometry (OES) showed a higher concentration of carbon, nickel, chromium and aluminum at the ingot center. That elemental saturation produced an increase in perlite content as well as hardness. The nondestructive technique of thermoelectric power was applied varying the hot tip temperature (40, 50, 60, 70°C), where higher temperature values showed to be more sensitive to segregation and microstructural changes. The statistical analysis showed that the thermoelectric power technique is more sensitive to detect the nickel and chromium concentration changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. de la Concepción, V.L., Lorusso, H.N., and Svoboda, H.G., Effect of carbon content on microstructure and mechanical properties of dual phase steels, Procedia Mater. Sci., 2015, vol. 8, pp. 1047–1056.

    Article  Google Scholar 

  2. Abbasi, E., Luo, Q., and Owens, D., A comparison of microstructure and mechanical properties of low-alloy-medium-carbon steels after quench-hardening, Mater. Sci. Eng. A, 2018, vol. 725, pp. 65–75.

    Article  CAS  Google Scholar 

  3. Turkmen, M., Effect of carbon content on microstructure and mechanical properties of powder metallurgy steels, Powder Metall. Met. Ceram., 2016, vol. 55, nos. 3–4, pp. 164–171.

    Article  CAS  Google Scholar 

  4. Mohd Fauzi, M.A., Saud, S.N., Hamzah, E., Mamat, M.F., and Ming, L.J., In vitro microstructure, mechanical properties and corrosion behaviour of low, medium and high carbon steel under different heat treatments, J. Bio-Tribo-Corros., 2019, vol. 5, no. 2.

  5. Guo, D., Hou, Z., Peng, Z., Liu, Q., Chang, Y., and Cao, J., Influence of superheat on macrosegregation in continuously cast steel billet from statistical maximum viewpoint, ISIJ Int., 2021, vol. 61, no. 3, pp. 844–852.

    Article  CAS  Google Scholar 

  6. Choudhary, S.K. and Ganguly, S., Morphology and segregation in continuously cast high carbon steel billets, ISIJ Int., 2007, vol. 47, no. 12, pp. 1759–1766.

    Article  CAS  Google Scholar 

  7. Wang, W., Bing Hou, Z., Chang, Y., and Hai Cao, J., Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio, J. Iron Steel Res. Int., 2018, vol. 25, no. 1, pp. 9–18.

    Article  CAS  Google Scholar 

  8. Krauss, G., Solidification, segregation, and banding in carbon and alloy steels, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2003, vol. 34, no. 6, pp. 781–792.

    Article  Google Scholar 

  9. Flemings, M.C., Our understanding of macrosegregation: Past and present, ISIJ Int., 2000, vol. 40, no. 9, pp. 833–841.

    Article  CAS  Google Scholar 

  10. Khan, F.A., The effect of soaking on segregation and primary-carbide dissolution in ingot-cast bearing steel, Metals (Basel), 2018, vol. 8, no. 10.

  11. Lan, P., Tang, H., and Zhang, J., Solidification microstructure, segregation, and shrinkage of Fe–Mn–C twinning-induced plasticity steel by simulation and experiment, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47, no. 6, pp. 2964–2984.

    Article  CAS  Google Scholar 

  12. Ennis, B.L., Jimenez-Melero, E., Mostert, R., Santillana, B., and Lee, P.D., The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel, Acta Mater., 2016, vol. 115, pp. 132–142.

    Article  CAS  Google Scholar 

  13. Ji, Y., Li, Y., Li, S., Zhang, X., and Zhang, J., Central segregation of high-carbon steel billet and its heredity to the hot-rolled wire rods, TMS Annu. Meet., 2016, pp. 625–633.

  14. Leuschke, U., Puwada, N.R., and Senk, D., Influence of micro-segregation in Pb–S-alloyed free machining steels on the surface quality of the rolled wire-rod, Metall. Ital., 2008, vol. 100, no. 5, pp. 5–11.

    Google Scholar 

  15. Das, S., Mathura, J., Bhattacharyya, T., and Bhattacharyya, S., Metallurgical investigation of different causes of center bursting led to wire breakage during production, Case Stud. Eng. Fail. Anal., 2013, vol. 1, no. 1, pp. 32–36.

    Article  Google Scholar 

  16. Liu, L., Sun, J., and Wang, H., Failure analysis procedure of steel wire drawing fracture, 13th Int. Conf. Fract. 2013 (Beijing, 2013), vol. 2, pp. 1641–1647.

  17. Madhuri, V., Gobinath, R., and Balachandran, G., Effect of carbon on the microstructure and mechanical properties in wire rods used for the manufacture of cold heading quality steels, Trans. Indian Inst. Met., 2019, vol. 72, no. 1, pp. 155–166.

    Article  CAS  Google Scholar 

  18. Palit, P., Das, S., and Mathur, J., Metallurgical investigation of wire breakage of tyre bead grade, Case Stud. Eng. Fail. Anal., 2015, vol. 4, pp. 83–87.

    Article  Google Scholar 

  19. ASTM E-381-01, Standard method of macroetch testing steel bars, billets, bloom, and forgings.

  20. Rowe, D. and Bhandari, C., CRC Handbook of Thermoelectrics, 1995.

    Google Scholar 

  21. Lavaire, N., Merlin, J., and Sardoy, V., Study of ageing in strained ultra and extra low, Scr. Mater., 2001, vol. 44, pp. 553–559.

    Article  CAS  Google Scholar 

  22. Lavaire, N., Massardier, V., and Merlin, J., Quantitative evaluation of the interstitial content (C and/or N) in solid solution in extra-mild steels by thermoelectric power measurements, Scr. Mater., 2004, vol. 50, no. 1, pp. 131–135.

    Article  CAS  Google Scholar 

  23. Soldatov, A.I., Soldatov, A.A., Kostina, M.A., and Kozhemyak, O.A., Experimental studies of thermoelectric characteristics of plastically deformed steels ST3, 08KP, and 12H18N10T, Key Eng. Mater., 2016, vol. 685, pp. 310–314.

    Article  Google Scholar 

  24. Caballero, F.G., Capdevila, C., Alvarez, L.F., and García de Andrés, C., Thermoelectric power studies on a martensitic stainless steel, Scr. Mater., 2004, vol. 50, no. 7, pp. 1061–1066.

    Article  CAS  Google Scholar 

  25. Benkirat, D., Merle, P., and Borrelly, R., Effects of precipitation on the thermoelectric power of iron–carbon alloys, Acta Metall., 1988, vol. 36, no. 3, pp. 613–620.

    Article  CAS  Google Scholar 

  26. Brahmy, R.B.A., Manganese Enrichment of Cementite and Solubility of Carbon in Low Carbon Steels Investigated by Thermoelectric Power Measurements, 1994.

  27. Perez, M., Massardier, V., and Kleber, X., Thermoelectric power applied to metallurgy: Principle and recent applications, Int. J. Mater. Res., 2009, vol. 100, no. 10, pp. 1461–1465.

    Article  CAS  Google Scholar 

  28. MacDonald, D.K.C., Thermoelectricity: An Introduction to Principles, New York: Wiley, 2006.

    Google Scholar 

  29. Kleber, X. and De Lyon, I., Surface and subsurface metallic inclusions detected using hot tip thermoelectric power measurements, ECNDT, 2006, pp. 1–8.

    Google Scholar 

  30. Simonet, L., Kleber, X., Fouquet, F., and Saillet, S., Characterization of segregated areas in ferritic steels by thermoelectric power measurement, Eur. Conf. NDE (2006), pp. 1–9.

    Google Scholar 

  31. Xiao, Y., Li, W., Zhao, H.S., Lu, X.W., and Jin, X.J., Investigation of carbon segregation during low temperature tempering in a medium carbon steel, Mater. Charact., 2016, vol. 117, pp. 84–90.

    Article  CAS  Google Scholar 

  32. Carreon, H., Thermoelectric detection of fretting damage in aerospace materials, Russ. J. Nondestr. Test., 2014, vol. 50, pp. 684–692.

    Article  CAS  Google Scholar 

  33. Lukhvich, A.A., Sharando, V.I., and Novikov, S.A., Applications of thermoelectric method to studying initial stages of deposition of electrolytic coatings, Russ. J. Nondestr. Test., 2000, vol. 36, pp. 465–470.

    Article  CAS  Google Scholar 

  34. Abouellail, A.A., Chang, T., and Soldatov, A.I., Laboratory substantiation of thermoelectric method for monitoring contact resistance, Russ. J. Nondestr. Test., 2022, vol. 58, pp. 1153–1161.

    Article  Google Scholar 

  35. Abouellail, A.A., Chang, J., and Soldatov, A.I., Influence of destabilizing factors on results of thermoelectric testing, Russ. J. Nondestr. Test., 2022, vol. 58, pp. 607–616.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Carreón.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, L., Carreón, H. & Bedolla, A. Estimation of the Segregation in a High Carbon Cast Steel by Thermoelectric Power Means. Russ J Nondestruct Test 59, 785–795 (2023). https://doi.org/10.1134/S1061830923600351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830923600351

Keywords:

Navigation