Skip to main content
Log in

Pricing swaptions and zero-coupon futures options under the discrete-time arbitrage-free Nelson–Siegel model

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

The paper outlines pricing procedures for several interest rate derivatives under the discrete-time arbitrage-free Nelson–Siegel (DTAFNS) model of Eghbalzadeh et al. (The discrete-time arbitrage-free Nelson–Siegel model: a closed-form solution and applications to mixed funds representation, 2022). Derivatives considered include swaptions, zero-coupon futures, and options on such futures. Formulas for expected excess returns are also provided for options on futures. Whereas swaption pricing relies on Monte-Carlo simulation, closed-form formulas are obtained for all other derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a payment date \(T_{\xi +1}\), \(\xi =\alpha ,\ldots ,\beta -1\), the floating rate is determined at the reset date \(T_{\xi }\).

  2. To produce more homogeneous errors \(N_t\), it might be desirable to fix the moneyness of options rather than their strike price.

References

  • Bakshi, G., Crosby, J., Gao, X., & Hansen, J. W. (2023). Treasury option returns and models with unspanned risks. Journal of Financial Economics(forthcoming).

  • Bakshi, G., Crosby, J., & Gao, X. (2022). Dark matter in (volatility and) equity option risk premiums. Operations Research, 70(6), 3108–3124.

    Article  Google Scholar 

  • Björk, T. (2009). Arbitrage theory in continuous time. Oxford University Press.

    Google Scholar 

  • Black, F., Derman, E., & Toy, W. (1990). A one-factor model of interest rates and its application to treasury bond options. Financial Analysts Journal, 46(1), 33–39.

    Article  Google Scholar 

  • Black, F., & Karasinski, P. (1991). Bond and option pricing when short rates are lognormal. Financial Analysts Journal, 47(4), 52–59.

    Article  Google Scholar 

  • Brigo, D., & Mercurio, F. (2007). Interest rate models-theory and practice: With smile, inflation and credit. Springer.

    Google Scholar 

  • Christensen, J. H., Diebold, F. X., & Rudebusch, G. D. (2011). The affine arbitrage-free class of Nelson–Siegel term structure models. Journal of Econometrics, 164(1), 4–20.

    Article  Google Scholar 

  • Christoffersen, P., Dorion, C., Jacobs, K., & Karoui, L. (2014). Nonlinear Kalman filtering in affine term structure models. Management Science, 60(9), 2248–2268.

    Article  Google Scholar 

  • Collin-Dufresne, P., & Goldstein, R. S. (2002). Pricing swaptions within an affine framework. The Journal of Derivatives, 10(1), 9–26.

    Article  Google Scholar 

  • Coval, J. D., & Shumway, T. (2001). Expected option returns. The Journal of Finance, 56(3), 983–1009.

    Article  Google Scholar 

  • Creal, D. (2012). A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews, 31(3), 245–296.

    Article  Google Scholar 

  • Del Moral, P. (1997). Nonlinear filtering: Interacting particle resolution. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 325(6), 653–658.

    Article  Google Scholar 

  • Duffie, D., & Kan, R. (1996). A yield-factor model of interest rates. Mathematical Finance, 6(4), 379–406.

    Article  Google Scholar 

  • Eghbalzadeh, R., Godin, F., & Gaillardetz, P. (2022). The discrete-time arbitrage-free Nelson–Siegel model: a closed-form solution and applications to mixed funds representation.

  • Geman, H. (1989). The importance of the forward neutral probability in a stochastic approach of interest rates. Technical report, Working paper, ESSEC.

  • Geman, H., El Karoui, N., & Rochet, J.-C. (1995). Changes of numeraire, changes of probability measure and option pricing. Journal of Applied Probability, 32(2), 443–458.

    Article  Google Scholar 

  • Godin, F. (2019). A closed-form solution for the global quadratic hedging of options under geometric Gaussian random walks. The Journal of Derivatives, 26(3), 97–107.

    Article  Google Scholar 

  • Jamshidian, F. (1996). Bond, futures and option evaluation in the quadratic interest rate model. Applied Mathematical Finance, 3(2), 93–115.

    Article  Google Scholar 

  • Julier, S. J. & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear systems. In Signal processing, sensor fusion, and target recognition VI (Vol. 3068, pp. 182–193). SPIE.

  • Munk, C. (1999). Stochastic duration and fast coupon bond option pricing in multi-factor models. Review of Derivatives Research, 3(2), 157–181.

    Article  Google Scholar 

  • Remillard, B. (2013). Statistical methods for financial engineering. CRC Press.

    Google Scholar 

  • Schrager, D. F., & Pelsser, A. A. (2006). Pricing swaptions and coupon bond options in affine term structure models. Mathematical Finance, 16(4), 673–694.

    Article  Google Scholar 

  • Singleton, K. J., & Umantsev, L. (2002). Pricing coupon-bond options and swaptions in affine term structure models. Mathematical Finance, 12(4), 427–446.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (Godin: RGPIN-2017-06837, Gaillardetz: RGPIN-2020-06821) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Godin.

Ethics declarations

Conflict of interest

Authors have no conflict of interests to report in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Before proving Proposition 2.1, several lemmas are presented.

Lemma 6.1

For \(i=1,2,3\) and any integer \(\tau >1\),

$$\begin{aligned} \mathcal {B}_{\tau }^{(i)}-1 &=\mathcal {B}_{\tau -1}^{(i)}\left( 1-\kappa ^{\mathbb {Q}}_{i,i}\right) -\mathbbm {1}_{ \{i=3\} } (1-\lambda )^{\tau -1} \\ &= \mathcal {B}_{\tau -1}^{(i)}(1-\lambda \mathbbm {1}_{ \{i>1\} } )-\mathbbm {1}_{ \{i=3\} } (1-\lambda )^{\tau -1}. \end{aligned}$$

Proof of Lemma 6.1

See Lemma A.2 of Eghbalzadeh et al. (2022).

Lemma 6.2

The following recursive relationship between the time-t and time-\(t+1\) zero-coupon bond prices presented in (2.3) holds for any integer \(\tau >0\):

$$\begin{aligned} P(t+1,t+\tau )&= P(t,t+\tau )e^{\Delta r_t} \exp \left[ \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) -\Delta \mathcal {B}_{\tau -1}^{\top }\left( \kappa ^\mathbb {Q}\theta ^\mathbb {Q}+ \Sigma Z_{t+1}^\mathbb {Q}\right) \right] . \end{aligned}$$

Proof of Lemma 6.2

The case \(\tau =1\) is trivial. For \(\tau >1\), using (2.1) and (2.3) for the first equality, and then Lemma 6.1 for the third one,

$$\begin{aligned}&\log \left( \dfrac{P(t+1,t+\tau )}{P(t,t+\tau )} \right) - \Delta r_t = \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) - \Delta \sum _{i=1}^3 \left( \mathcal {B}_{\tau -1}^{(i)} X_{t+1}^{(i)}\right. \\&\qquad \left. -\left( \mathcal {B}_{\tau }^{(i)}-1\right) X_t^{(i)}\right) +\Delta \sum _{i=1}^3 X_t^{(i)} - \Delta (X_t^{(1)}+X_t^{(2)}) \\&\quad = \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) - \Delta \sum _{i=1}^2 \mathcal {B}_{\tau -1}^{(i)}\left( X_{t+1}^{(i)}-\left( \dfrac{\mathcal {B}_{\tau }^{(i)}-1}{\mathcal {B}_{\tau -1}^{(i)}}\right) X_t^{(i)}\right) + \Delta X_t^{(3)} \\&\quad \quad - \Delta \left( \mathcal {B}_{\tau -1}^{(3)} X_{t+1}^{(3)}-\left( \mathcal {B}_{\tau }^{(3)}-1\right) X_t^{(3)}\right) \\&\quad = \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) - \Delta \sum _{i=1}^2 \mathcal {B}_{\tau -1}^{(i)}\left( X_{t+1}^{(i)}-\left( 1-\kappa ^{\mathbb {Q}}_{i,i}\right) X_t^{(i)}\right) + \Delta X_t^{(3)} \\&\quad \quad - \left( \Delta \mathcal {B}_{\tau -1}^{(3)} X_{t+1}^{(3)}-\left( \Delta \mathcal {B}_{\tau -1}^{(3)}(1-\lambda )-(1-\lambda )^{\tau -1}\right) X_t^{(3)}\right) \\&\quad =\log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) - \Delta \sum _{i=1}^3 \mathcal {B}_{\tau -1}^{(i)}\left( X_{t+1}^{(i)}-\left( 1-\kappa ^{\mathbb {Q}}_{i,i}\right) X_t^{(i)}\right) \\&\quad \quad+ \Delta \left( 1-(1-\lambda )^{\tau - 1}\right) X_t^{(3)} \\&\quad = \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) - \Delta \mathcal {B}_{\tau -1}^{\top }\left( \kappa ^\mathbb {Q}\theta ^\mathbb {Q}+ \Sigma Z_{t+1}^\mathbb {Q}\right) + \Delta \left( 1-(1-\lambda )^{\tau - 1} - \mathcal {B}_{\tau -1}^{(2)}\lambda \right) X_t^{(3)}\\&\quad = \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) - \Delta \mathcal {B}_{\tau -1}^{\top }\left( \kappa ^\mathbb {Q}\theta ^\mathbb {Q}+ \Sigma Z_{t+1}^\mathbb {Q}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} P(t+1,t+\tau )&= P(t,t+\tau )e^{\Delta r_t} \exp \left[ \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) -\Delta \mathcal {B}_{\tau -1}^{\top }\left( \kappa ^\mathbb {Q}\theta ^\mathbb {Q}+ \Sigma Z_{t+1}^\mathbb {Q}\right) \right] . \end{aligned}$$

\(\square\)

Lemma 6.3

Consider any integer \(\tau >0\) and any real number r. Using the convention \(0^0=0\), for functions \(\zeta _0(r,\tau ),\zeta _1(r,\tau )\) and \(\zeta _2(r,\tau )\) defined in (2.7)–(2.9),

$$\begin{aligned} \zeta _0(r,\tau -1)-\zeta _0(r,\tau )&= -r^{\tau -1} , \end{aligned}$$
(6.1)
$$\begin{aligned} \zeta _1(r,\tau -1)-\zeta _1(r,\tau )&= -r^{\tau -1}(\tau -1) , \end{aligned}$$
(6.2)
$$\begin{aligned} \zeta _2(r,\tau -1)-\zeta _2(r,\tau )&= -r^{\tau -1}(\tau -1)^2 . \end{aligned}$$
(6.3)

Proof of Lemma 6.3

This result is a direct consequence of the sum representations of \(\zeta _0(r,\tau ),\zeta _1(r,\tau )\) and \(\zeta _2(r,\tau )\) provided in (2.7)–(2.9). \(\square\)

Lemma 6.4

The following recursive connection holds for the quantity \(\upsilon _\tau\) defined in (2.6) for any integer \(\tau >0\):

$$\begin{aligned} \upsilon _{\tau } = \mathcal {B}_{\tau -1}^{\top } \Sigma \rho ( \mathcal {B}_{\tau -1}^{\top } \Sigma )^\top + \upsilon _{\tau -1}. \end{aligned}$$
(6.4)

Proof of Lemma 6.4

The case \(\tau =1\) is trivial as it leads to \(0=0\). For \(\tau >1\), first,

$$\begin{aligned} \mathcal {B}_{\tau -1}^{\top } \Sigma \rho ( \mathcal {B}_{\tau -1}^{\top } \Sigma )^\top&= \sum ^3_{i=1} \sum ^3_{j=1} \mathcal {B}_{\tau -1}^{(i)} \mathcal {B}_{\tau -1}^{(j)}\Sigma _{i,i}\Sigma _{j,j}\rho _{i,j}. \end{aligned}$$

Moreover, based on (2.6),

$$\begin{aligned} \upsilon _{\tau } - \upsilon _{\tau -1}&= \sum ^3_{i=1} \sum ^3_{j=1} a^{(i,j)}_\tau \Sigma _{i,i} \Sigma _{j,j} \rho _{i,j}, \end{aligned}$$

with \(a^{(i,j)}_\tau = (\upsilon ^{(i,j)}_{\tau } - \upsilon ^{(i,j)}_{\tau -1})/(\Sigma _{i,i} \Sigma _{j,j} \rho _{i,j})\).

To complete the proof, we now show that \(a^{(i,j)}_\tau =\mathcal {B}_{\tau -1}^{(i)} \mathcal {B}_{\tau -1}^{(j)}\) for any \(i,j=1,2,3\).

First, for \(i=j=1\),

$$\begin{aligned} a^{(1,1)}_\tau&= \dfrac{\tau (\tau -1)(2\tau -1)}{6} - \dfrac{(\tau -1)(\tau -2)(2\tau -3)}{6}. \\&=\dfrac{(\tau -1)(2\tau ^2-\tau -2\tau ^2+7\tau -6)}{6}\\&=(\tau -1)^2\\&=\mathcal {B}_{\tau -1}^{(1)} \mathcal {B}_{\tau -1}^{(1)}. \end{aligned}$$

Secondly, for \(i=1\) and \(j=2\), using (6.2),

$$\begin{aligned} a^{(1,2)}_\tau&= \frac{1}{\lambda }\left( \frac{\tau (\tau -1)}{2} - \zeta _1 (1-\lambda ,\tau ) - \frac{(\tau -1)(\tau -2)}{2} + \zeta _1 (1-\lambda ,\tau -1)\right) \\&= \dfrac{(\tau -1)-(1-\lambda )^{\tau -1}(\tau -1)}{\lambda }\\ &=\mathcal {B}_{\tau -1}^{(1)}\mathcal {B}_{\tau -1}^{(2)}. \end{aligned}$$

Thirdly, consider \(i=1\) and \(j=3\). For \(\tau =2\), \(a^{(1,3)}_2= \mathcal {B}_{1}^{(1)}\mathcal {B}_{1}^{(3)}=0\) since \(\upsilon ^{(1,3)}_{2}=\upsilon ^{(1,3)}_{1}=0\). For \(\tau >2\), using (6.1), (6.2), and (6.3),

$$\begin{aligned} a^{(1,3)}_\tau&= \frac{1}{\lambda } \bigg [\frac{\tau (\tau -1)}{2}-1 -\zeta _0\left( 1-\lambda ,\tau -1\right) -(1+\lambda )\zeta _1\left( 1-\lambda ,\tau -1\right) \\&\quad -\lambda \zeta _2\left( 1-\lambda ,\tau -1\right)- \frac{(\tau -1)(\tau -2)}{2}+1 +\zeta _0\left( 1-\lambda ,\tau -2\right) \\&\quad +(1+\lambda )\zeta _1\left( 1-\lambda ,\tau -2\right) +\lambda \zeta _2\left( 1-\lambda ,\tau -2\right) \bigg ]\\&=\dfrac{1}{\lambda }\bigg [\tau - 1 - (1-\lambda )^{\tau -2}-(1-\lambda )^{\tau - 2}(\tau -2)(1+\lambda )-\lambda (1-\lambda )^{\tau -2 }(\tau - 2)^2 \bigg ]\\&=\dfrac{1}{\lambda }\bigg [\tau - 1 - (1-\lambda )^{\tau -2}-(1-\lambda )^{\tau - 2}(\tau -1 - 1)(1+\lambda )\\&\quad -\lambda (1-\lambda )^{\tau -2 }(\tau - 2)(\tau - 1 -1) \bigg ]\\&=\dfrac{1}{\lambda }\bigg [\tau - 1 -(1-\lambda )^{\tau - 2}(\tau -1 )(1+\lambda )\\&\quad +\lambda (1-\lambda )^{\tau - 2}-\lambda (1-\lambda )^{\tau -2 }(\tau - 2)(\tau - 1 )+\lambda (1-\lambda )^{\tau -2 }(\tau - 1-1) \bigg ]\\&=\dfrac{\tau -1}{\lambda }\bigg [1 -(1-\lambda )^{\tau - 2}-\lambda (1-\lambda )^{\tau -2 }(\tau - 2) \bigg ]\\&=\mathcal {B}_{\tau -1}^{(1)}\mathcal {B}_{\tau -1}^{(3)}. \end{aligned}$$

Fourthly, for \(i=j=2\),

$$\begin{aligned} a^{(2,2)}_\tau&=\frac{1}{\lambda ^2} \left( \tau - 2 \left[ \frac{1-(1-\lambda )^\tau }{\lambda }\right] + \frac{1-(1-\lambda )^{2 \tau }}{1-(1-\lambda )^2} - \tau + 1 + 2 \left[ \frac{1-(1-\lambda )^{\tau -1} }{\lambda }\right] \right. \\&\quad \left. -\frac{1-(1-\lambda )^{2 (\tau -1)}}{1-(1-\lambda )^2}\right) \\&=\frac{1}{\lambda ^2} \left( 1 -2(1-\lambda )^{\tau -1}+(1-\lambda )^{2(\tau -1)}\right) \\&=\mathcal {B}_{\tau -1}^{(2)} \mathcal {B}_{\tau -1}^{(2)}. \end{aligned}$$

Fifthly, consider \(i=2\) and \(j=3\). For \(\tau =2\), \(a^{(2,3)}_2= \mathcal {B}_{1}^{(2)}\mathcal {B}_{1}^{(3)}=0\) since \(\upsilon ^{(2,3)}_{2}=\upsilon ^{(2,3)}_{1}=0\). For \(\tau >2\), using (6.1) and (6.2),

$$\begin{aligned} a^{(2,3)}_\tau&= \frac{\tau -2- (2-\lambda )\zeta _0\left( 1-\lambda ,\tau -1\right) + (1-\lambda )\zeta _0\left( (1-\lambda )^2,\tau -1\right) }{\lambda ^2}\\&\quad + \frac{- \zeta _1\left( 1-\lambda ,\tau -1\right) + (1-\lambda )\zeta _1\left( (1-\lambda )^2,\tau -1\right) }{\lambda }\\&\quad - \frac{\tau -3- (2-\lambda )\zeta _0\left( 1-\lambda ,\tau -2\right) + (1-\lambda )\zeta _0\left( (1-\lambda )^2,\tau -2\right) }{\lambda ^2}\\&\quad - \frac{- \zeta _1\left( 1-\lambda ,\tau -2\right) + (1-\lambda )\zeta _1\left( (1-\lambda )^2,\tau -2\right) }{\lambda }\\&= \frac{1- (2-\lambda )(1-\lambda )^{\tau -2} + (1-\lambda )(1-\lambda )^{2(\tau -2)} }{\lambda ^2} \\&\quad +\frac{-(1-\lambda )^{\tau -2}(\tau -2)+(1-\lambda )(1-\lambda )^{2(\tau -2)}(\tau -2)}{\lambda }\\&= \frac{\left( 1-(1-\lambda )^{\tau -2}\right) ^2 +\lambda (1-\lambda )^{\tau -2}\left( 1- (1-\lambda )^{\tau -2}\right) }{\lambda ^2} \\&\quad +\frac{(1-\lambda )^{\tau -2}(\tau -2)\left( (1-\lambda )^{\tau -1}-1\right) }{\lambda }\\&= \frac{\left( 1-(1-\lambda )^{\tau -2}\right) \left( 1-(1-\lambda )^{\tau -2}(1-\lambda )\right) }{\lambda ^2} \\&\quad+ \frac{(1-\lambda )^{\tau -2}(\tau -2)\left( (1-\lambda )^{\tau -1}-1\right) }{\lambda }\\&= \frac{1-(1-\lambda )^{\tau -1}}{\lambda }\left( \frac{1-(1-\lambda )^{\tau -2}}{\lambda }-(1-\lambda )^{\tau -2}(\tau -2)\right) \\&=\mathcal {B}_{\tau -1}^{(2)}\mathcal {B}_{\tau -1}^{(3)}. \end{aligned}$$

Lastly, consider \(i=j=3\). For \(\tau =2\), \(a^{(3,3)}_2= \mathcal {B}_{1}^{(3)}\mathcal {B}_{1}^{(3)}=0\) since \(\upsilon ^{(3,3)}_{2}=\upsilon ^{(3,3)}_{1}=0\). For \(\tau >2\), using (6.1), (6.2), and (6.3),

$$\begin{aligned} a^{(3,3)}_\tau&= \frac{1}{\lambda ^2} \bigg [ \tau -2 + \zeta _0\left( (1-\lambda )^2,\tau -1\right) +\lambda ^2 \zeta _2\left( (1-\lambda )^2,\tau -1\right) \\&\quad - 2\zeta _0\left( 1-\lambda ,\tau -1\right) - 2\lambda \zeta _1\left( 1-\lambda ,\tau -1\right) + 2\lambda \zeta _1\left( (1-\lambda )^2,\tau -1\right) \\&\quad - \tau +3 - \zeta _0\left( (1-\lambda )^2,\tau -2\right) -\lambda ^2 \zeta _2\left( (1-\lambda )^2,\tau -2\right) \\&\quad + 2\zeta _0\left( 1-\lambda ,\tau -2\right) + 2\lambda \zeta _1\left( 1-\lambda ,\tau -2\right) - 2\lambda \zeta _1\left( (1-\lambda )^2,\tau -2\right) \bigg ]\\&=\frac{1}{\lambda ^2} \bigg [1+(1-\lambda )^{2(\tau -2)}+\lambda ^2(1-\lambda )^{2(\tau -2)}(\tau -2)^2-2(1-\lambda )^{\tau -2}\\&\quad -2\lambda (1-\lambda )^{\tau -2}(\tau -2)+2\lambda (1-\lambda )^{2(\tau -2)}(\tau -2)\bigg ]\\&=\frac{1}{\lambda ^2} \bigg [\left( 1-(1-\lambda )^{\tau -2}\right) ^2+\lambda ^2(1-\lambda )^{2(\tau -2)}(\tau -2)^2\\&\quad -2\lambda (1-\lambda )^{\tau -2}(\tau -2)\left( 1-(1-\lambda )^{\tau -2}\right) \bigg ]\\&=\frac{1}{\lambda ^2} \bigg [\left( 1-(1-\lambda )^{\tau -2} -\lambda (1-\lambda )^{\tau -2}(\tau -2)\right) ^2\bigg ]\\&=\left( \dfrac{1-(1-\lambda )^{\tau -2}}{\lambda } -(1-\lambda )^{\tau -2}(\tau -2)\right) ^2\\&=\mathcal {B}_{\tau -1}^{(3)} \mathcal {B}_{\tau -1}^{(3)}. \end{aligned}$$

\(\square\)

Lemma 6.5

For \(i=1,2,3\) and any integer \(\tau >0\), the following recursive relationships between \(\mathcal {B}^{(i)}_{\tau }\) and \(\mathcal {B}^{(i)}_{\tau -1}\) hold:

$$\begin{aligned} \mathcal {B}^{(1)}_{\tau }= & {} \mathcal {B}^{(1)}_{\tau -1} + 1,\\ \mathcal {B}^{(2)}_{\tau }= & {} \mathcal {B}^{(2)}_{\tau -1}+(1-\lambda )^{\tau -1},\\ \mathcal {B}^{(3)}_{\tau }= & {} \mathcal {B}^{(3)}_{\tau -1}+(1-\lambda )^{\tau -2}\lambda (\tau -1). \end{aligned}$$

Proof of Lemma 6.5

The case \(\tau =1\) is trivial. For \(\tau >1\), based on (2.4), \(\mathcal {B}^{(1)}_{\tau } =\tau -1+1=\mathcal {B}^{(1)}_{\tau -1}+1.\) Furthermore,

$$\begin{aligned} \mathcal {B}^{(2)}_{\tau }&= \dfrac{1-(1-\lambda )^{\tau }}{\lambda }-1+1 = (1-\lambda )\mathcal {B}^{(2)}_{\tau -1}+1\\&=\mathcal {B}^{(2)}_{\tau -1}-1+(1-\lambda )^{\tau -1}+1=\mathcal {B}^{(2)}_{\tau -1}+(1-\lambda )^{\tau -1}. \end{aligned}$$

Lastly,

$$\begin{aligned} \mathcal {B}^{(3)}_{\tau }&=\frac{1-(1-\lambda )^{\tau -1}}{\lambda } -1+1 - (\tau -2+1) (1-\lambda )^{\tau -1}\\&=(1-\lambda )\left( \frac{1-(1-\lambda )^{\tau -2}}{\lambda } +\dfrac{1}{1-\lambda } - (\tau -2) (1-\lambda )^{\tau -2}-(1-\lambda )^{\tau -2}\right) \\&=\mathcal {B}^{(3)}_{\tau -1} +\dfrac{1}{1-\lambda } -(1-\lambda )^{\tau -2} \\&\quad -1+(1-\lambda )^{\tau -2}-\dfrac{\lambda }{1-\lambda }+ \lambda (\tau -2) (1-\lambda )^{\tau -2}+\lambda (1-\lambda )^{\tau -2} \\&=\mathcal {B}^{(3)}_{\tau -1}+(1-\lambda )^{\tau -2}\lambda (\tau -1). \end{aligned}$$

\(\square\)

Lemma 6.6

The following recursive relationship holds for quantity \(A_{\tau }\) defined in (2.3) and any integer \(\tau >0\):

$$\begin{aligned} A_{\tau }= A_{\tau -1} \exp \left( \frac{1}{2} \Delta ^2\mathcal {B}_{\tau -1}^{\top } \Sigma \rho ( \mathcal {B}_{\tau -1}^{\top } \Sigma )^\top - \Delta \mathcal {B}_{\tau -1}^{\top } \kappa ^\mathbb {Q}\theta ^\mathbb {Q}\right) . \end{aligned}$$

Proof of Lemma 6.6

For \(\tau =1\), the proof is trivial. For \(\tau >1\), using Lemma 6.4, Lemma 6.5 and (2.4) to substitute into (2.5),

$$\begin{aligned}&\log \left( \dfrac{A_{\tau -1}}{A_{\tau }}\right) -\Delta \mathcal {B}_{\tau -1}^{\top } \kappa ^\mathbb {Q}\theta ^\mathbb {Q} = -\Delta \theta _2^\mathbb {Q}\left( \mathcal {B}_{\tau -1}^{(1)} - \mathcal {B}_{\tau }^{(1)} + \mathcal {B}_{\tau }^{(2)} - \mathcal {B}_{\tau -1}^{(2)} \right) \\&\qquad + \Delta \theta _3^\mathbb {Q}\left( \mathcal {B}_{\tau -1}^{(3)}-\mathcal {B}_{\tau }^{(3)}\right)-\Delta \mathcal {B}_{\tau -1}^{\top } \kappa ^\mathbb {Q}\theta ^\mathbb {Q}- \frac{1}{2} \Delta ^2\left( \upsilon _\tau -\upsilon _{\tau -1}\right) \\&\quad = -\Delta \theta _2^\mathbb {Q}\left( -1 + (1-\lambda )^{\tau -1} \right) - \Delta \theta _3^\mathbb {Q}(1-\lambda )^{\tau -2}\lambda (\tau -1) \\&\quad \quad -\Delta \mathcal {B}_{\tau -1}^{\top } \kappa ^\mathbb {Q}\theta ^\mathbb {Q}- \frac{1}{2} \Delta ^2\left( \upsilon _\tau -\upsilon _{\tau -1}\right) \\&\quad =\Delta \theta _2^\mathbb {Q}\lambda \mathcal {B}_{\tau -1}^{(2)} - \Delta \theta _3^\mathbb {Q}\lambda (1-\lambda )^{\tau -2}(\tau -1)-\Delta \mathcal {B}_{\tau -1}^{(2)} \lambda (\theta _2^\mathbb {Q}- \theta _3^\mathbb {Q}) -\Delta \mathcal {B}_{\tau -1}^{(3)} \lambda \theta _3^\mathbb {Q}\\&\quad \quad - \frac{1}{2} \Delta ^2\left( \upsilon _\tau -\upsilon _{\tau -1}\right) \\&\quad = - \Delta \theta _3^\mathbb {Q}\lambda (1-\lambda )^{\tau -2}(\tau -1) + \Delta \lambda \theta _3^\mathbb {Q}( \mathcal {B}_{\tau -1}^{(2)} - \mathcal {B}_{\tau -1}^{(3)}) - \frac{1}{2} \Delta ^2\mathcal {B}_{\tau -1}^{\top } \Sigma \rho ( \mathcal {B}_{\tau -1}^{\top } \Sigma )^\top \\&\quad =- \frac{1}{2} \Delta ^2\mathcal {B}_{\tau -1}^{\top } \Sigma \rho ( \mathcal {B}_{\tau -1}^{\top } \Sigma )^\top . \end{aligned}$$

\(\square\)

Proof of Proposition 2.1

The proof relies on calculating the moments generating function of innovations under the \(\mathcal {T}\)-forward measure. Consider the row vector \(\Gamma =[\Gamma _1,\Gamma _2,\Gamma _3]\) with \(\Gamma _i \in \mathbb {R}\) for \(i=1,2,3\). Then

$$\begin{aligned}&\mathbb {E}^{\mathcal {T}}\left[ \exp (\Gamma Z^{\mathcal {T}}_{t+1})\bigg |\mathcal {F}_t\right] =\mathbb {E}^{\mathcal {T}}\left[ \exp (\Gamma Z^{\mathbb {Q}}_{t+1}+\Gamma \Delta \rho \Sigma \mathcal {B}_{\tau -1}) \bigg |\mathcal {F}_t\right] \\&\quad = \frac{\mathbb {E}^{{\mathbb {Q}}}\left[ \exp (\Gamma Z^{\mathbb {Q}}_{t+1}+\Gamma \Delta \rho \Sigma \mathcal {B}_{\tau -1}) \dfrac{d\mathbb {Q}^{\mathcal {T}}}{d\mathbb {Q}} \bigg |\mathcal {F}_t\right] }{\mathbb {E}^{{\mathbb {Q}}}\left[ \dfrac{d\mathbb {Q}^{\mathcal {T}}}{d\mathbb {Q}} \bigg |\mathcal {F}_t\right] }\\&\quad = \exp \left[ \Gamma \Delta \rho \Sigma \mathcal {B}_{\tau -1}\right] \dfrac{\mathbb {E^Q}\left[ \exp (\Gamma Z^{\mathbb {Q}}_{t+1})\dfrac{P(t+\tau ,t+\tau )B(0)}{P(0,t+\tau )B(t+\tau )} \bigg |\mathcal {F}_t \right] }{\mathbb {E^Q}\left[ \dfrac{P(t+\tau ,t+\tau )B(0)}{P(0,t+\tau )B(t+\tau )} \bigg |\mathcal {F}_t \right] }\\&\quad = \exp \left[ \Gamma \Delta \rho \Sigma \mathcal {B}_{\tau -1} \right] \frac{1}{P(0,t+\tau )}\dfrac{\mathbb {E^Q}\left[ \exp (\Gamma Z^{\mathbb {Q}}_{t+1})\dfrac{P(t+\tau ,t+\tau )}{B(t+\tau )} \bigg |\mathcal {F}_t \right] }{\dfrac{P(t,t+\tau )}{P(0,t+\tau )B(t)}}\\&\quad =\exp \left[ \Gamma \rho \Delta \Sigma \mathcal {B}_{\tau -1} \right] \dfrac{B(t)}{P(t,t+\tau )} \mathbb {E^Q}\left[ \exp (\Gamma Z^{\mathbb {Q}}_{t+1})\mathbb {E^Q}\left[ \dfrac{P(t+\tau ,t+\tau )}{B(t+\tau )} \bigg |\mathcal {F}_{t+1} \right] \bigg |\mathcal {F}_t \right] \\&\quad = \exp \left[ \Gamma \Delta \rho \Sigma \mathcal {B}_{\tau -1} \right] \mathbb {E^Q}\left[ \exp (\Gamma Z^{\mathbb {Q}}_{t+1}) \dfrac{B(t)}{P(t,t+\tau )}\dfrac{P(t+1,t+\tau )}{B(t+1)} \bigg |\mathcal {F}_t \right] , \end{aligned}$$

where the fourth and fifth equalities rely on the fact that \(\frac{P(\cdot ,\mathcal {T})}{B(\cdot )}\) is a \(\mathbb {Q}\)-martingale.

Define

$$\begin{aligned} Y(Z_{t+1}^\mathbb {Q}) \equiv \Gamma Z^{\mathbb {Q}}_{t+1}+\log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) -\Delta \mathcal {B}_{\tau -1}^{\top }\left( \kappa ^\mathbb {Q}\theta ^\mathbb {Q}+ \Sigma Z_{t+1}^\mathbb {Q}\right) . \end{aligned}$$

Using Lemma 6.2 therefore leads to

$$\begin{aligned} \mathbb {E}^{\mathcal {T}}\left[ \exp \left( \Gamma Z^{\mathcal {T}}_{t+1}\right) \bigg |\mathcal {F}_t\right] =\exp \left[ \Gamma \Delta \rho \Sigma \mathcal {B}_{\tau -1} \right] \mathbb {E^Q}\bigg [ \exp \left( Y(Z_{t+1}^\mathbb {Q}) \right) \bigg |\mathcal {F}_t \bigg ], \end{aligned}$$

where, given \(\mathcal {F}_t\), \(Y(Z_{t+1}^\mathbb {Q})\) follows the Gaussian distribution with conditional mean and variance

$$\begin{aligned} \mathbb {E^Q}\left[ Y(Z_{t+1}^\mathbb {Q}) \bigg |\mathcal {F}_t \right]&= \log \left( \dfrac{A_{\tau -1}}{A_\tau }\right) -\Delta \mathcal {B}_{\tau -1}^{\top } \kappa ^\mathbb {Q}\theta ^\mathbb {Q},\\ \text {Var}^{\mathbb {Q}} \left[ Y(Z_{t+1}^\mathbb {Q}) \bigg |\mathcal {F}_t \right]&= \Gamma \rho \Gamma ^\top + \Delta \mathcal {B}_{\tau -1}^{\top } \Sigma \rho (\Delta \mathcal {B}_{\tau -1}^{\top } \Sigma )^\top - 2 \Gamma \Delta \rho \Sigma \mathcal {B}_{\tau -1}. \end{aligned}$$

Thus,

$$\begin{aligned} \mathbb {E}^{\mathcal {T}}\left[ \exp (\Gamma Z^{\mathcal {T}}_{t+1})\bigg |\mathcal {F}_t\right]&=\dfrac{A_{\tau -1}}{A_\tau } \exp \left( -\Delta \mathcal {B}_{\tau -1}^{\top } \kappa ^\mathbb {Q}\theta ^\mathbb {Q}+ \dfrac{1}{2} \Delta \mathcal {B}_{\tau -1}^{\top } \Sigma \rho (\Delta \mathcal {B}_{\tau -1}^{\top } \Sigma )^\top \right)\times \\&\quad \exp \left( \dfrac{1}{2}\Gamma \rho \Gamma ^\top \right) . \end{aligned}$$

Therefore, using Lemma 6.6 leads to

$$\begin{aligned} \mathbb {E}^{\mathcal {T}}\left[ \exp (\Gamma Z^{\mathcal {T}}_{t+1})\bigg |\mathcal {F}_t\right] =\exp \left( \dfrac{1}{2}\Gamma \rho \Gamma ^\top \right) . \end{aligned}$$

\(\square\)

Lemma 6.7

Assume (2.13) holds. For \(t=0,\ldots ,\mathcal {T}\) and \(n=0,\ldots ,\mathcal {T}-t\),

$$\begin{aligned} X^{(i)}_{t+n}&=X^{(i)}_{t}(1-\kappa ^{\mathcal {T}}_{i,i})^{n}+\kappa ^{\mathcal {T}}_{i,i} \theta ^{\mathcal {T}}_i \sum _{l=1}^{n}(1-\kappa ^{\mathcal {T}}_{i,i})^{(n-l)}+\Sigma _{i,i}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,i}(1-\kappa ^{\mathcal {T}}_{i,i})^{(n-l)} \\&\quad +\sum _{l=1}^{n}\sum _{j\ne i}^3 \kappa ^{\mathcal {T}}_{i,j} (\theta ^{\mathcal {T}}_j-X^{(j)}_{t+l-1}) (1-\kappa ^{\mathcal {T}}_{i,i})^{(n-l)} - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(i)}_{t+l} (1- \kappa ^{\mathcal {T}}_{i,i})^{n-1-l}. \end{aligned}$$
(6.5)

Proof of Lemma 6.7

This proof is analogous to that of Lemma A.1 from Eghbalzadeh et al. (2022), which is based on induction. We apply the convention \(\sum _{l=0}^{-1} x_l= \sum _{l=1}^{0} x_l \equiv 0\). The case \(n=0\) is therefore trivial. Then, assume (6.5) holds for some \(n \le \mathcal {T}-t-1\). Using (2.13), for any \(i=1,2,3\),

$$\begin{aligned} X^{(i)}_{t+n+1}&=X^{(i)}_{t+n}+\sum _{j=1}^{3}\kappa ^{\mathcal {T}}_{i,j}(\theta ^{\mathcal {T}}_j-X^{(j)}_{t+n})+\Sigma _{i,i}Z^{\mathcal {T}}_{t+n+1,i} - \eta _{t+n}^{\mathcal {T},(i)}\\&=X^{(i)}_{t+n}(1-\kappa ^{\mathcal {T}}_{i,i})+ \kappa ^{\mathcal {T}}_{i,i}\theta ^{\mathcal {T}}_i +\sum _{j\ne i}^{3}\kappa ^{\mathcal {T}}_{i,j}(\theta ^{\mathcal {T}}_j-X^{(j)}_{t+n})+\Sigma _{i,i}Z^{\mathcal {T}}_{t+n+1,i} - \eta _{t+n}^{\mathcal {T},(i)}. \end{aligned}$$

Applying (6.5) in the latter equality yields

$$\begin{aligned} X^{(i)}_{t+n+1}&= X^{(i)}_{t}(1-\kappa ^{\mathcal {T}}_{i,i})^{n+1}+\kappa ^{\mathcal {T}}_{i,i}\theta ^{\mathcal {T}}_i \sum _{l=1}^{n}(1-\kappa ^{\mathcal {T}}_{i,i})^{(n+1-l)}+\Sigma _{i,i}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,i}(1-\kappa ^{\mathcal {T}}_{i,i})^{(n+1-l)}\\&\quad +\sum _{l=1}^{n}\sum _{j\ne i}^{3}\kappa ^{\mathcal {T}}_{i,j}(\theta ^{\mathcal {T}}_j-X^{(j)}_{t+l-1})(1-\kappa ^{\mathcal {T}}_{i,i})^{(n+1-l)} + \kappa ^{\mathcal {T}}_{i,i}\theta ^{\mathcal {T}}_i - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(i)}_{t+l} (1- \kappa ^{\mathcal {T}}_{i,i} )^{n-l}\\&\quad +\sum _{j\ne i}^{3}\kappa ^{\mathcal {T}}_{i,j}(\theta ^{\mathcal {T}}_j-X^{(j)}_{t+n})+\Sigma _{i,i}Z^{\mathcal {T}}_{t+n+1,i} - \eta ^{\mathcal {T},(i)}_{t+n}\\&= X^{(i)}_{t}(1-\kappa ^{\mathcal {T}}_{i,i})^{n+1}+\kappa ^{\mathcal {T}}_{i,i}\theta ^{\mathcal {T}}_i \sum _{l=1}^{n+1}(1-\kappa ^{\mathcal {T}}_{i,i})^{(n+1-l)}+\Sigma _{i,i}\sum _{l=1}^{n+1}Z^{\mathcal {T}}_{t+l,i}(1-\kappa ^{\mathcal {T}}_{i,i})^{(n+1-l)}\\&\quad +\sum _{l=1}^{n+1}\sum _{j\ne i}^{3}\kappa ^{\mathcal {T}}_{i,j}(\theta ^{\mathcal {T}}_j-X^{(j)}_{t+l-1})(1-\kappa ^{\mathcal {T}}_{i,i})^{(n+1-l)} - \sum _{l=0}^{n}\eta ^{\mathcal {T},(i)}_{t+l} (1- \kappa ^{\mathcal {T}}_{i,i} )^{n-l} , \end{aligned}$$

thereby finishing the induction. \(\square\)

Lemma 6.8

For \(n=0,\ldots ,\mathcal {T}-t\), the factors \(X^{(i)}_{t+n}\) can be expressed in terms of \(X_{t}\) and innovations \(\{ Z^{\mathcal {T}}_{t+l} \}^{\mathcal {T}-t}_{l=1}\) as follows:

$$\begin{aligned} X^{(1)}_{t+n}=& X^{(1)}_{t}+\Sigma _{1,1}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,1} - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(1)}_{t+l},\\ X^{(2)}_{t+n}=& X^{(2)}_{t}(1-\lambda )^{n}+(\theta ^\mathcal {T}_2-\theta ^\mathcal {T}_3)\left( 1-(1-\lambda )^n\right) +\Sigma _{2,2}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,2}(1-\lambda )^{(n-l)}\\&\quad + \lambda \bigg (nX^{(3)}_{t} (1-\lambda )^{n-1} + \theta ^{\mathcal {T}}_3 \left( \frac{\left( 1-(1-\lambda )^n\right) }{\lambda }-n(1-\lambda )^{n-1} \right) \\&\quad + \Sigma _{3,3} \sum _{k=1}^{n-1} (n-k)(1-\lambda )^{n-k-1} Z^{\mathcal {T}}_{t+k,3} -\sum _{k=0}^{n-1}(n-k-1) \eta ^{\mathcal {T},(3)}_{t+k} (1-\lambda )^{n-k-2}\bigg )\\&\quad -\sum _{l=0}^{n-1}\eta ^{\mathcal {T},(2)}_{t+l} (1- \lambda )^{n-1-l},\\ X^{(3)}_{t+n}=& X^{(3)}_{t}(1-\lambda )^{n}+ \theta ^\mathcal {T}_3\left( 1-(1-\lambda )^n\right) +\Sigma _{3,3}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,3}(1-\lambda )^{(n-l)}\\&\quad - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(3)}_{t+l} (1- \lambda )^{n-1-l}. \end{aligned}$$

Proof of Lemma 6.8

From (2.12), \(\kappa ^{\mathcal {T}}_{1,1}=\kappa ^{\mathcal {T}}_{1,2}=\kappa ^{\mathcal {T}}_{1,3}=\kappa ^{\mathcal {T}}_{2,1}=\kappa ^{\mathcal {T}}_{3,1}=\kappa ^{\mathcal {T}}_{3,2}=0\), \(\kappa ^{\mathcal {T}}_{2,2}=\kappa ^{\mathcal {T}}_{3,3}=\lambda\) and \(\kappa ^{\mathcal {T}}_{2,3}=-\lambda\). When placed into (6.5), this leads to

$$\begin{aligned} X^{(1)}_{t+n}= & {} X^{(1)}_{t}+\Sigma _{1,1}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,1} - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(1)}_{t+l}, \\ X^{(2)}_{t+n}= & {} X^{(2)}_{t}(1-\lambda )^{n}+\lambda \theta ^\mathcal {T}_2 \sum _{l=1}^{n}(1-\lambda )^{(n-l)}+\Sigma _{2,2}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,2}(1-\lambda )^{(n-l)} \\{} & {} \quad -\lambda \sum _{l=1}^{n} (\theta ^\mathcal {T}_3-X^{(3)}_{t+l-1}) (1-\lambda )^{(n-l)} - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(2)}_{t+l} (1- \lambda )^{n-1-l}, \end{aligned}$$
(6.6)
$$\begin{aligned} X^{(3)}_{t+n}= & {} X^{(3)}_{t}(1-\lambda )^{n}+\lambda \theta ^\mathcal {T}_3 \sum _{l=1}^{n}(1-\lambda )^{(n-l)}+\Sigma _{3,3}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,3}(1-\lambda )^{(n-l)} \\{} & {} \quad - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(3)}_{t+l} (1- \lambda )^{n-1-l}. \end{aligned}$$
(6.7)

Furthermore,

$$\begin{aligned}\sum _{l=1}^{n} (1-\lambda )^{n-l} X^{(3)}_{t+l-1} &= \sum _{l=0}^{n-1}(1-\lambda )^{n-l-1} X^{(3)}_{t+l} \\& = \sum _{l=0}^{n-1} (1-\lambda )^{n-l-1} \bigg [ X^{(3)}_{t}(1-\lambda )^{l}+\lambda \theta ^{\mathcal {T}}_3 \sum _{k=1}^{l}(1-\lambda )^{(l-k)} \\&\quad \quad +\Sigma _{3,3}\sum _{k=1}^{l}Z^{\mathcal {T}}_{t+k,3}(1-\lambda )^{(l-k)}- \sum _{k=0}^{l-1}(1-\lambda )^{l-1-k}\eta ^{\mathcal {T},(3)}_{t+k}\bigg ] \\& = nX^{(3)}_{t} (1-\lambda )^{n-1} + \lambda \theta ^{\mathcal {T}}_3 \sum _{l=0}^{n-1} \frac{(1-\lambda )^{n-l-1}-(1-\lambda )^{n-1}}{\lambda } \\&\quad \quad + \Sigma _{3,3} \sum _{l=0}^{n-1} \sum _{k=1}^{n-1} \mathbbm {1}_{\{k \le l\}} Z^{\mathcal {T}}_{t+k,3} (1-\lambda )^{n-k-1} - \sum _{l=0}^{n-1} \sum _{k=0}^{n-1}\mathbbm {1}_{\{k \le l-1\}}(1-\lambda )^{n-k-2} \eta ^{\mathcal {T},(3)}_{t+k} \\ &= nX^{(3)}_{t} (1-\lambda )^{n-1} + \theta ^{\mathcal {T}}_3 \left( \dfrac{1-(1-\lambda )^n}{\lambda }-n(1-\lambda )^{n-1} \right) \\&\quad \quad + \Sigma _{3,3} \sum _{k=1}^{n-1} Z^{\mathcal {T}}_{t+k,3} \sum _{l=k}^{n-1} (1-\lambda )^{n-k-1}-\sum _{k=0}^{n-1} \eta ^{\mathcal {T},(3)}_{t+k} \sum _{l=k+1}^{n-1}(1-\lambda )^{n-k-2} \\& = nX^{(3)}_{t} (1-\lambda )^{n-1} + \theta ^{\mathcal {T}}_3 \left( \dfrac{1-(1-\lambda )^n}{\lambda }-n(1-\lambda )^{n-1} \right) \\&\quad \quad + \Sigma _{3,3} \sum _{k=1}^{n-1} (n-k)(1-\lambda )^{n-k-1} Z^{\mathcal {T}}_{t+k,3} -\sum _{k=0}^{n-1}(n-k-1) \eta ^{\mathcal {T},(3)}_{t+k} (1-\lambda )^{n-k-2}. \end{aligned}$$
(6.8)

Using (6.8) in (6.6),

$$\begin{aligned} X^{(2)}_{t+n}&=X^{(2)}_{t}(1-\lambda )^{n}+\theta ^\mathcal {T}_2\left( 1-(1-\lambda )^n\right) +\Sigma _{2,2}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,2}(1-\lambda )^{(n-l)}\\&\quad - \theta ^\mathcal {T}_3\left( 1-(1-\lambda )^n\right) \\&\quad + \lambda \bigg (n X^{(3)}_{t} (1-\lambda )^{n-1} + \theta ^{\mathcal {T}}_3 \left( \dfrac{1-(1-\lambda )^n}{\lambda }-n(1-\lambda )^{n-1} \right) \\&\quad + \Sigma _{3,3} \sum _{k=1}^{n-1} (n-k)(1-\lambda )^{n-k-1} Z^{\mathcal {T}}_{t+k,3} -\sum _{k=0}^{n-1}(n-k-1) \eta ^{\mathcal {T},(3)}_{t+k} (1-\lambda )^{n-k-2}\bigg ) \\&\quad - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(2)}_{t+l} (1- \lambda )^{n-1-l}. \end{aligned}$$

Moreover, using (2.7) in (6.7) leads to

$$\begin{aligned} X^{(3)}_{t+n}&=X^{(3)}_{t}(1-\lambda )^{n}+ \theta ^\mathcal {T}_3\left( 1-(1-\lambda )^n\right) +\Sigma _{3,3}\sum _{l=1}^{n}Z^{\mathcal {T}}_{t+l,3}(1-\lambda )^{(n-l)}\\&\quad - \sum _{l=0}^{n-1}\eta ^{\mathcal {T},(3)}_{t+l} (1- \lambda )^{n-1-l}. \end{aligned}$$

\(\square\)

Proof of Proposition 2.2

The joint normality of \(X_{t+n}\) given \(\mathcal {F}_t\) is a direct consequence of Lemma 6.8, which expresses \(X_{t+n}\) as a linear combination of the \(\mathcal {F}_t\)-measurable elements of \(X_t\) and of jointly Gaussian innovations \(Z^\mathcal {T}_{t+1},\ldots , Z^\mathcal {T}_{t+n}\) that are independent of \(\mathcal {F}_t\). The composition of \(\mathcal {M}_{t,n}\) is also a direct consequence of Lemma 6.8, and of the null expectation of innovations \(Z^\mathcal {T}_{t+1},\ldots , Z^\mathcal {T}_{t+n}\) given \(\mathcal {F}_t\).

Components of \(\mathcal {V}_{n}\) are also obtained through Lemma 6.8 and (2.7)–(2.9):

$$\begin{aligned} \mathcal {V}^{(1,1)}_{n}&=\text {Var}^\mathcal {T}(X^{(1)}_{t+n} |\mathcal {F}_t)= \Sigma _{1,1}^2 \sum _{l=1}^{n}\text {Var}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,1}) =n \Sigma _{1,1}^2,\\ \mathcal {V}^{(2,2)}_{n}&=\text {Var}^\mathcal {T}(X^{(2)}_{t+n}|\mathcal {F}_t) = \Sigma ^2_{2,2} \sum _{l=1}^{n}(1-\lambda )^{2(n-l)} \text {Var}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,2}) \\&\quad + \lambda ^2 \Sigma ^2_{3,3} \sum _{l=1}^{n-1} (n-l)^2(1-\lambda )^{2(n-l-1)} \text {Var}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,3})\\&\quad +2\Sigma _{2,2} \lambda \Sigma _{3,3}\sum _{l=1}^{n-1} (n-l)(1-\lambda )^{2(n-l)-1} \text {Cov}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,2},Z^{\mathcal {T}}_{t+l,3})\\&= \Sigma _{2,2}^2 \left( 1+\zeta _0((1-\lambda )^2,n)\right) + \lambda ^2\Sigma _{3,3}^2(1-\lambda )^{-2}\zeta _2((1-\lambda )^2,n)\\&\quad +2\Sigma _{2,2} \lambda \Sigma _{3,3}\rho _{2,3}(1-\lambda )^{-1}\zeta _1\left( \left( 1-\lambda \right) ^2,n\right) ,\\ \mathcal {V}^{(3,3)}_{n}&=\text {Var}^\mathcal {T}(X^{(3)}_{t+n}|\mathcal {F}_t)=\Sigma _{3,3}^2\sum _{l=1}^n(1-\lambda )^{2(n-l)}\text {Var}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,3}) \\&=\Sigma _{3,3}^2 \left( 1+\zeta _0((1-\lambda )^2,n)\right) \end{aligned}$$

and

$$\begin{aligned} \mathcal {V}^{(1,2)}_{n}=\mathcal {V}^{(2,1)}_{n}&=\text {Cov}^\mathcal {T}(X^{(1)}_{t+n},X^{(2)}_{t+n}|\mathcal {F}_t)=\Sigma _{1,1}\Sigma _{2,2}\sum _{l=1}^{n}(1-\lambda )^{n-l}\text {Cov}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,1},Z^{\mathcal {T}}_{t+l,2})\\&\quad +\lambda \Sigma _{1,1}\Sigma _{3,3}\sum _{l=1}^{n-1}(n-l)(1-\lambda )^{n-l-1}\text {Cov}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,1},Z^{\mathcal {T}}_{t+l,3})\\&=\Sigma _{1,1}\Sigma _{2,2}\rho _{1,2}\left( 1+\zeta _0(1-\lambda ,n)\right) +\lambda \Sigma _{1,1}\Sigma _{3,3}\rho _{1,3}\dfrac{\zeta _1(1-\lambda ,n)}{1-\lambda },\\ \mathcal {V}^{(1,3)}_{n}=\mathcal {V}^{(3,1)}_{n}&=\text {Cov}^\mathcal {T}(X^{(1)}_{t+n},X^{(3)}_{t+n}|\mathcal {F}_t)=\Sigma _{1,1}\Sigma _{3,3}\sum _{l=1}^{n}(1-\lambda )^{n-l}\text {Cov}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,1},Z^{\mathcal {T}}_{t+l,3})\\&=\Sigma _{1,1}\Sigma _{3,3}\rho _{1,3} \left( 1+\zeta _0(1-\lambda ,n)\right) ,\\ \mathcal {V}^{(2,3)}_{n}=\mathcal {V}^{(3,2)}_{n}&=\text {Cov}^\mathcal {T}(X^{(2)}_{t+n},X^{(3)}_{t+n}|\mathcal {F}_t)\\&=\Sigma _{2,2}\Sigma _{3,3}\sum _{l=1}^{n}(1-\lambda )^{2(n-l)}\text {Cov}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,2},Z^{\mathcal {T}}_{t+l,3})\\&\quad +\lambda \Sigma _{3,3}^2\sum _{l=1}^{n-1}(n-l)(1-\lambda )^{2(n-l)-1}\text {Var}^\mathcal {T}(Z^{\mathcal {T}}_{t+l,3})\\&=\Sigma _{2,2}\Sigma _{3,3} \rho _{2,3}\left( 1+\zeta _0((1-\lambda )^2,n)\right) +\lambda \Sigma _{3,3}^2\dfrac{\zeta _1((1-\lambda )^2,n)}{1-\lambda }. \end{aligned}$$

\(\square\)

Proof of Lemma 2.1

From, (2.12), for \(i=1,2,3\), \(\eta ^{\mathcal {T},(i)}_t = \Delta \Sigma _{i,i}\sum ^3_{j=1} \Sigma _{j,j} \rho _{i,j} \mathcal {B}^{(j)}_{\mathcal {T}-t-1}\). Therefore,

$$\begin{aligned} \sum _{l=0}^{\mathcal {T}-t-1} \eta ^{\mathcal {T},(1)}_{t+l}&= \Delta \Sigma _{1,1}\sum ^3_{j=1} \Sigma _{j,j} \rho _{1,j} \sum _{l=0}^{\mathcal {T}-t-1} \mathcal {B}^{(j)}_{\mathcal {T}-t-l-1}\\&= \Delta \Sigma _{1,1}\sum ^3_{j=1} \Sigma _{j,j} \rho _{1,j} \sum _{l=0}^{\mathcal {T}-t-1} \mathcal {B}^{(j)}_{l}\\&= \Delta \Sigma _{1,1}\sum ^3_{j=1} \Sigma _{j,j} \rho _{1,j} \sum _{l=1}^{\mathcal {T}-t-1} \mathcal {B}^{(j)}_{l}\\&=\Delta \Sigma _{1,1}\bigg [\Sigma _{1,1} \frac{(\mathcal {T}-t-1)(\mathcal {T}-t)}{2} +\dfrac{\Sigma _{2,2} \rho _{1,2}}{\lambda }\left( \mathcal {T}-t-1 -\zeta _0\left( 1-\lambda ,\mathcal {T}-t\right) \right) \\&\quad +\Sigma _{3,3} \rho _{1,3}\bigg ( \dfrac{\mathcal {T}-t-1-\left( 1+\zeta _0\left( 1-\lambda ,\mathcal {T}-t-1\right) \right) }{\lambda }\\&\quad -\zeta _1\left( 1-\lambda , \mathcal {T}-t-1\right) \bigg )\bigg ]. \end{aligned}$$

Moreover, for \(i=2,3\),

$$\begin{aligned}&\sum _{l=0}^{\mathcal {T}-t-1}\eta ^{\mathcal {T},(i)}_{t+l} (1- \lambda )^{\mathcal {T}-t-1-l}\\&\quad = \Delta \Sigma _{i,i}\sum _{l=0}^{\mathcal {T}-t-1}(1- \lambda )^{\mathcal {T}-t-1-l}\left( \Sigma _{1,1} \rho _{i,1} \mathcal {B}^{(1)}_{\mathcal {T}-t-l-1} \!+\! \Sigma _{2,2} \rho _{i,2} \mathcal {B}^{(2)}_{\mathcal {T}-t-l-1} \!\right. \\&\quad \quad \left. +\! \Sigma _{3,3} \rho _{i,3} \mathcal {B}^{(3)}_{\mathcal {T}-t-l-1} \right) \\&\quad = \Delta \Sigma _{i,i}\sum _{l=1}^{\mathcal {T}-t-1}(1- \lambda )^{l}\left( \Sigma _{1,1} \rho _{i,1} \mathcal {B}^{(1)}_{l} + \Sigma _{2,2} \rho _{i,2} \mathcal {B}^{(2)}_{l} + \Sigma _{3,3} \rho _{i,3} \mathcal {B}^{(3)}_{l} \right) \\&\quad =\Delta \Sigma _{i,i}\bigg [\Sigma _{1,1} \rho _{i,1} \zeta _1\left( 1-\lambda ,\mathcal {T}-t\right) \\&\quad \quad+\dfrac{\Sigma _{2,2} \rho _{i,2}}{\lambda }\left( \zeta _0\left( 1-\lambda ,\mathcal {T}-t\right) -\zeta _0\left( \left( 1-\lambda \right) ^{2},\mathcal {T}-t\right) \right) \\&\quad \quad +\Sigma _{3,3} \rho _{i,3}\bigg (\dfrac{\zeta _0\left( 1-\lambda ,\mathcal {T}-t\right) -(1-\lambda )^{-1}\zeta _0\left( \left( 1-\lambda \right) ^{2},\mathcal {T}-t\right) }{\lambda } \\&\qquad -(1+\lambda )\zeta _1\left( \left( 1-\lambda \right) ^{2},\mathcal {T}-t-1\right) \bigg )\bigg ]. \end{aligned}$$

Lastly,

$$\begin{aligned}&\sum _{k=0}^{\mathcal {T}-t-1}(\mathcal {T}-t-k-1) \eta ^{\mathcal {T},(3)}_{t+k} (1-\lambda )^{\mathcal {T}-t-k-2}\\&\quad = \sum _{k=0}^{\mathcal {T}-t-1}(\mathcal {T}-t-k-1) \Delta \Sigma _{3,3}\sum ^3_{j=1} \Sigma _{j,j} \rho _{3,j} \mathcal {B}^{(j)}_{\mathcal {T}-t-k-1} (1-\lambda )^{\mathcal {T}-t-k-2}\\&\quad = \Delta \Sigma _{3,3} \sum _{k=0}^{\mathcal {T}-t-1} k \sum ^3_{j=1} \Sigma _{j,j} \rho _{3,j} \mathcal {B}^{(j)}_{k} (1-\lambda )^{k-1}\\&\quad = \Delta \Sigma _{3,3} \sum _{k=1}^{\mathcal {T}-t-1} \sum ^3_{j=1} \Sigma _{j,j} \rho _{3,j} k \mathcal {B}^{(j)}_{k} (1-\lambda )^{k-1}\\&\quad = \frac{\Delta \Sigma _{3,3}}{1-\lambda } \bigg ( \Sigma _{1,1} \rho _{3,1} \zeta _2\left( 1-\lambda ,\mathcal {T}-t\right) + \frac{\Sigma _{2,2} \rho _{2,1}}{\lambda } \left[ \zeta _1\left( 1-\lambda ,\mathcal {T}-t\right) \right. \\&\qquad \left. - \zeta _1\left( (1-\lambda )^2,\mathcal {T}-t\right) \right] \\&\quad \quad + \Sigma _{3,3} \rho _{3,1} \left[ \frac{\zeta _1\left( 1-\lambda ,\mathcal {T}-t\right) }{\lambda } - \frac{1}{\lambda }\zeta _1\left( (1-\lambda )^2,\mathcal {T}-t\right) \right. \\&\qquad \left. - (1-\lambda )^{-1}\zeta _2\left( (1-\lambda )^2,\mathcal {T}-t\right) \right] \bigg ). \end{aligned}$$

Lemma 6.9

Under the risk-neutral measure \(\mathbb {Q}\), conditionally on \(\mathcal {F}_t\), factors \(X_{t+n}\) follow the multivariate Gaussian distribution with mean vector \(\tilde{\mathcal {M}}_{t,n}=\left[ \tilde{\mathcal {M}}^{(i)}_{t,n}\right] ^3_{i=1}\) and covariance matrix \(\mathcal {V}_{n}=\left[ \mathcal {V}^{(i,j)}_{n}\right] ^3_{i,j=1}\), where

$$\begin{aligned} \tilde{\mathcal {M}}^{(1)}_{t,n}&=X^{(1)}_{t}, \\ \tilde{\mathcal {M}}^{(2)}_{t,n}&=X^{(2)}_{t}(1-\lambda )^{n}+(\theta ^\mathbb {Q}_2-\theta ^\mathbb {Q}_3)\left( 1-(1-\lambda )^n\right) \\&\quad + \lambda \bigg (nX^{(3)}_{t} (1-\lambda )^{n-1} + \theta ^{\mathbb {Q}}_3 \left( \dfrac{\zeta _0(1-\lambda ,n+1)}{1-\lambda }-n(1-\lambda )^{n-1} \right) \bigg ),\\ \tilde{\mathcal {M}}^{(3)}_{t,n}&=X^{(3)}_{t}(1-\lambda )^{n}+ \theta ^\mathbb {Q}_3\left( 1-(1-\lambda )^n\right) . \end{aligned}$$

Proof of Lemma 6.9

The proof is analogous to that of Proposition 2.2, replacing forward measure superscripts \(\mathcal {T}\) by \(\mathbb {Q}\) and setting the process \(\eta\) to zero. \(\square\)

Proof of Proposition 2.3

From (2.14), For \(t=0,\ldots ,T\) and \(n=0,\ldots ,T-t\),

$$\begin{aligned} X^{(i)}_{t+n}&=X^{(i)}_{t}(1-\kappa ^{\mathbb {P}}_{i,i})^{n}+\kappa ^{\mathbb {P}}_{i,i} \theta ^{\mathbb {P}}_i \sum _{l=1}^{n}(1-\kappa ^{\mathbb {P}}_{i,i})^{(n-l)}+\Sigma _{i,i}\sum _{l=1}^{n}Z^{\mathbb {P}}_{t+l,i}(1-\kappa ^{\mathbb {P}}_{i,i})^{(n-l)} \\&\quad +\sum _{l=1}^{n}\sum _{j\ne i}^3 \kappa ^{\mathbb {P}}_{i,j} (\theta ^{\mathbb {P}}_j-X^{(j)}_{t+l-1}) (1-\kappa ^{\mathbb {P}}_{i,i})^{(n-l)}. \end{aligned}$$
(6.9)

Indeed, steps for the proof of (6.9) are identical to these for the proof of Lemma 6.7, setting the process \(\eta\) to zero. This leads to

$$\begin{aligned} X^{(i)}_{t+n}&=X^{(i)}_{t}(1-\kappa ^{\mathbb {P}}_{i,i})^{n}+ \theta ^\mathbb {P}_i\left( 1-(1-\kappa ^{\mathbb {P}}_{i,i})^n\right) +\Sigma _{i,i}\sum _{l=1}^{n}Z^{\mathbb {P}}_{t+l,i}(1-\kappa ^{\mathbb {P}}_{i,i})^{(n-l)}, \quad i=1,3. \end{aligned}$$
(6.10)

and

$$\begin{aligned} X^{(2)}_{t+n}= & {} X^{(2)}_{t}(1-\kappa ^{\mathbb {P}}_{2,2})^{n}+\kappa ^{\mathbb {P}}_{2,2} \theta ^\mathbb {P}_2 \sum _{l=1}^{n}(1-\kappa ^{\mathbb {P}}_{2,2})^{(n-l)}+\Sigma _{2,2}\sum _{l=1}^{n}Z^{\mathbb {P}}_{t+l,2}(1-\kappa ^{\mathbb {P}}_{2,2})^{(n-l)} \\{} & {} \quad -\lambda \sum _{l=1}^{n} (\theta ^\mathbb {P}_3-X^{(3)}_{t+l-1}) (1-\kappa ^{\mathbb {P}}_{2,2})^{(n-l)}. \end{aligned}$$
(6.11)

Furthermore, assuming \(\kappa ^{\mathbb {P}}_{2,2} \ne \kappa ^{\mathbb {P}}_{3,3}\) and denoting \(\omega =\frac{1-\kappa ^{\mathbb {P}}_{3,3}}{1-\kappa ^{\mathbb {P}}_{2,2}}\),

$$\begin{aligned} -\sum _{l=1}^{n} (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-l} \left( \theta ^\mathbb {P}_3- X^{(3)}_{t+l-1}\right)&= -\sum _{l=0}^{n-1}(1-\kappa ^{\mathbb {P}}_{2,2} )^{n-l-1} \left( \theta ^\mathbb {P}_3- X^{(3)}_{t+l} \right) \\&= \sum _{l=0}^{n-1} (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-l-1} \bigg [ X^{(3)}_{t}(1-\kappa ^{\mathbb {P}}_{3,3} )^{l}- \theta ^{\mathbb {P}}_3 (1-\kappa ^{\mathbb {P}}_{3,3})^l \\&\quad +\Sigma _{3,3}\sum _{k=1}^{l}Z^{\mathbb {P}}_{t+k,3}(1-\kappa ^{\mathbb {P}}_{3,3} )^{(l-k)} \bigg ] \\&= (X^{(3)}_{t}-\theta ^{\mathbb {P}}_3)\frac{1-\omega ^n}{1-\omega } (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1} \\&\quad + \Sigma _{3,3} \sum _{l=0}^{n-1} \sum _{k=1}^{n-1} \mathbbm {1}_{\{k \le l\}} Z^{\mathbb {P}}_{t+k,3} \omega ^l\frac{ (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{k}} \\&= (X^{(3)}_{t}-\theta ^{\mathbb {P}}_3)\frac{1-\omega ^n}{1-\omega } (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1} \\&\quad + \Sigma _{3,3} \sum _{k=1}^{n-1} Z^{\mathbb {P}}_{t+k,3} \frac{ (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{k}} \sum _{l=k}^{n-1} \omega ^{l} \\&= (X^{(3)}_{t}-\theta ^{\mathbb {P}}_3)\frac{1-\omega ^n}{1-\omega } (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1} \\&\quad + \Sigma _{3,3} \sum _{k=1}^{n-1} Z^{\mathbb {P}}_{t+k,3} \frac{ (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{k}} \frac{\omega ^{k}-\omega ^{n}}{1-\omega } . \end{aligned}$$
(6.12)

Substituting (6.12) into (6.11) leads to

$$\begin{aligned} X^{(2)}_{t+n}&= X^{(2)}_{t}(1-\kappa ^{\mathbb {P}}_{2,2})^{n}+ \theta ^\mathbb {P}_2 \left( 1-(1-\kappa ^{\mathbb {P}}_{2,2})^{n} \right) +\Sigma _{2,2}\sum _{l=1}^{n}Z^{\mathbb {P}}_{t+l,2}(1-\kappa ^{\mathbb {P}}_{2,2})^{(n-l)} \\&\quad + \lambda \bigg ( (X^{(3)}_{t}-\theta ^{\mathbb {P}}_3)\frac{1-\omega ^n}{1-\omega } (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1} + \Sigma _{3,3} \sum _{l=1}^{n-1} Z^{\mathbb {P}}_{t+l,3} \frac{ (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{l}} \frac{\omega ^{l}-\omega ^{n}}{1-\omega } \bigg ). \end{aligned}$$
(6.13)

Combining (6.10) and (6.13) directly yields expressions for \(\mathcal {M}^{\mathbb {P},(i)}_{t,n}\). Additionally,

$$\begin{aligned} \mathcal {V}^{\mathbb {P},(1,1)}_{n}&=\text {Var}^{\mathbb{P}}(X^{(1)}_{t+n}|\mathcal {F}_t)=\Sigma _{1,1}^2\sum _{l=1}^n (1-\kappa ^{\mathbb {P}}_{1,1})^{2(n-l)}\text {Var}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,1})\\&= {\left\{ \begin{array}{ll} \Sigma _{1,1}^2 \left( 1+\zeta _0((1-\kappa ^{\mathbb {P}}_{1,1})^2,n)\right) \quad \text { if } \kappa ^{\mathbb {P}}_{1,1}\in (0,1),\\ n \Sigma _{1,1}^2 \quad \text { if } \kappa ^{\mathbb {P}}_{1,1}=0, \end{array}\right. }\\ \mathcal {V}^{\mathbb {P},(2,2)}_{n}&=\text {Var}^{\mathbb{P}}(X^{(2)}_{t+n}|\mathcal {F}_t) = \Sigma ^2_{2,2} \sum _{l=1}^{n}(1-\kappa ^{\mathbb {P}}_{2,2})^{2(n-l)} \text {Var}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,2})\\&\quad + \lambda ^2 \Sigma ^2_{3,3} \sum _{l=1}^{n-1} \left( \frac{ (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{l}} \frac{\omega ^{l}-\omega ^{n}}{1-\omega }\right) ^2 \text {Var}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,3})\\&\quad +2\Sigma _{2,2} \lambda \Sigma _{3,3}\sum _{l=1}^{n-1} (1-\kappa ^{\mathbb {P}}_{2,2} )^{(2n-l-1)} \left( \frac{1}{1-\omega }\left( \frac{\omega }{1-\kappa ^{\mathbb {P}}_{3,3}} \right) ^l \right. \\&\quad \left. - \frac{\omega ^n}{1-\omega }\left( \frac{1}{1-\kappa ^{\mathbb {P}}_{3,3}} \right) ^l\right) \text {Cov}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,2},Z^{\mathbb {P}}_{t+l,3})\\&= \Sigma _{2,2}^2 \left( 1+\zeta _0((1-\kappa ^{\mathbb {P}}_{2,2})^2,n)\right) + \lambda ^2 \Sigma ^2_{3,3} \frac{(1-\kappa ^{\mathbb {P}}_{2,2} )^{2n-2}}{(1-\omega )^2} \sum _{l=1}^{n-1} \left( \frac{ \omega ^{2l}-2\omega ^{l+n}+\omega ^{2n}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{2l}} \right) \\&\quad +2 \frac{\rho _{2,3} \lambda \Sigma _{2,2} \Sigma _{3,3}}{1-\omega } (1-\kappa ^{\mathbb {P}}_{2,2} )^{(2n-1)}\sum _{l=1}^{n-1} \left( \left( \frac{\omega }{(1-\kappa ^{\mathbb {P}}_{2,2})(1-\kappa ^{\mathbb {P}}_{3,3})} \right) ^l \right. \\&\quad \left. -\omega ^n\left( \frac{1}{(1-\kappa ^{\mathbb {P}}_{2,2})(1-\kappa ^{\mathbb {P}}_{3,3})} \right) ^l\right) \\&= \Sigma _{2,2}^2 \left( 1+\zeta _0((1-\kappa ^{\mathbb {P}}_{2,2})^2,n)\right) \\&\quad + \lambda ^2 \Sigma ^2_{3,3} \frac{(1-\kappa ^{\mathbb {P}}_{2,2} )^{2n-2}}{(1-\omega )^2} \left[ \zeta _0\left( (1-\kappa ^{\mathbb {P}}_{2,2})^{-2},n\right) -2\omega ^n \zeta _0\left( \omega (1-\kappa ^{\mathbb {P}}_{3,3})^{-2},n\right) \right. \\&\quad \left. + \omega ^{2n}\zeta _0\left( (1-\kappa ^{\mathbb {P}}_{3,3})^{-2},n\right) \right] \\&\quad +2 \frac{\rho _{2,3} \lambda \Sigma _{2,2} \Sigma _{3,3}}{1-\omega } (1-\kappa ^{\mathbb {P}}_{2,2} )^{(2n-1)} \left[ \zeta _0\left( \frac{\omega }{(1-\kappa ^{\mathbb {P}}_{2,2})(1-\kappa ^{\mathbb {P}}_{3,3})},n\right) \right. \\&\quad \left. -\omega ^n \zeta _0\left( \frac{1}{(1-\kappa ^{\mathbb {P}}_{2,2})(1-\kappa ^{\mathbb {P}}_{3,3})},n\right) \right] ,\\ \mathcal {V}^{\mathbb {P},(3,3)}_{n}&=\text {Var}^{\mathbb{P}}(X^{(3)}_{t+n}|\mathcal {F}_t)=\Sigma _{3,3}^2\sum _{l=1}^n(1-\kappa ^{\mathbb {P}}_{3,3})^{2(n-l)}\text {Var}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,3})\\&=\Sigma _{3,3}^2 \left( 1+\zeta _0((1-\kappa ^{\mathbb {P}}_{3,3})^2,n)\right) \end{aligned}$$

and

$$\begin{aligned} \mathcal {V}^{\mathbb {P},(1,2)}_{n}&=\mathcal {V}^{\mathbb {P},(2,1)}_{n}=\text {Cov}^\mathbb {P}(X^{(1)}_{t+n},X^{(2)}_{t+n}|\mathcal {F}_t)\\&=\Sigma _{1,1}\Sigma _{2,2}\sum _{l=1}^{n}(1-\kappa ^{\mathbb {P}}_{1,1})^{n-l} (1-\kappa ^{\mathbb {P}}_{2,2})^{n-l} \text {Cov}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,1},Z^{\mathbb {P}}_{t+l,2})\\&\quad +\lambda \Sigma _{1,1}\Sigma _{3,3}\sum _{l=1}^{n-1} (1-\kappa ^{\mathbb {P}}_{1,1})^{n-l} \frac{ (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{l}} \frac{\omega ^{l}-\omega ^{n}}{1-\omega } \text {Cov}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,1},Z^{\mathbb {P}}_{t+l,3})\\&=\Sigma _{1,1}\Sigma _{2,2}\rho _{1,2} \left[ 1+\zeta _0((1-\kappa ^{\mathbb {P}}_{1,1})(1-\kappa ^{\mathbb {P}}_{2,2}),n) \right] \\&\quad +\lambda \Sigma _{1,1}\Sigma _{3,3}\rho _{1,3} \frac{(1-\kappa ^{\mathbb {P}}_{1,1})^n (1-\kappa ^{\mathbb {P}}_{2,2})^{n-1}}{1-\omega } \times \\&\quad \left( \zeta _0 \left( \frac{\omega }{(1-\kappa ^{\mathbb {P}}_{1,1})(1-\kappa ^{\mathbb {P}}_{3,3})},n\right) - \omega ^n \zeta _0 \left( \frac{1}{(1-\kappa ^{\mathbb {P}}_{1,1})(1-\kappa ^{\mathbb {P}}_{3,3})},n\right) \right) ,\\ \mathcal {V}^{\mathbb {P},(1,3)}_{n}&=\mathcal {V}^{\mathbb {P},(3,1)}_{n}=\text {Cov}^\mathbb {P}(X^{(1)}_{t+n},X^{(3)}_{t+n}|\mathcal {F}_t)\\&=\Sigma _{1,1}\Sigma _{3,3}\sum _{l=1}^{n} (1-\kappa ^{\mathbb {P}}_{1,1})^{(n-l)} (1-\kappa ^{\mathbb {P}}_{3,3})^{(n-l)} \text {Cov}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,1},Z^{\mathbb {P}}_{t+l,3})\\&=\Sigma _{1,1}\Sigma _{3,3}\rho _{1,3}\left[ 1 +\zeta _0( (1-\kappa ^{\mathbb {P}}_{1,1})(1-\kappa ^{\mathbb {P}}_{3,3}),n)\right] ,\\ \mathcal {V}^{\mathbb {P},(2,3)}_{n}&=\mathcal {V}^{\mathbb {P},(3,2)}_{n}=\text {Cov}^\mathbb {P}(X^{(2)}_{t+n},X^{(3)}_{t+n}|\mathcal {F}_t)\\&=\Sigma _{2,2}\Sigma _{3,3}\sum _{l=1}^{n}(1-\kappa ^{\mathbb {P}}_{2,2})^{n-l} (1-\kappa ^{\mathbb {P}}_{3,3})^{n-l} \text {Cov}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,2},Z^{\mathbb {P}}_{t+l,3})\\&\quad +\lambda \Sigma _{3,3}^2\sum _{l=1}^{n-1}\frac{ (1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1}}{(1-\kappa ^{\mathbb {P}}_{3,3} )^{l}} \frac{\omega ^{l}-\omega ^{n}}{1-\omega } (1-\kappa ^{\mathbb {P}}_{3,3})^{n-l}\text {Var}^\mathbb {P}(Z^{\mathbb {P}}_{t+l,3})\\&=\Sigma _{2,2}\Sigma _{3,3} \rho _{2,3} \left[ 1+\zeta _0((1-\kappa ^{\mathbb {P}}_{2,2})(1-\kappa ^{\mathbb {P}}_{3,3}),n)\right] \\&\quad +\lambda \Sigma _{3,3}^2 \frac{(1-\kappa ^{\mathbb {P}}_{2,2} )^{n-1} (1-\kappa ^{\mathbb {P}}_{3,3} )^{n}}{1-\omega } \left( \zeta _0\left( \frac{1}{(1-\kappa ^{\mathbb {P}}_{2,2} )(1-\kappa ^{\mathbb {P}}_{3,3} )},n\right) \right. \\&\quad - \omega ^n \zeta _0\left( (1-\kappa ^{\mathbb {P}}_{3,3})^{-2} ,n\right) \bigg) \!. \end{aligned}$$

\(\square\)

Proof of Theorem 4.1

Using Lemma (6.9), the futures prices can be obtained from the moment generating function of the normal distribution:

$$\begin{aligned} F_{\mathcal {T}_1,\mathcal {T}_2,\mathcal {T}_3}= & {} \mathbb {E^Q}\left[ P(\mathcal {T}_2,\mathcal {T}_3)\bigg | \mathcal {F}_{\mathcal {T}_1}\right] ,\\= & {} \mathbb {E^Q}\left[ A_{\tau _3}\exp \left[ -\Delta \mathcal {B}_{\tau _3}^\top X_{\mathcal {T}_2}\right] \bigg | \mathcal {F}_{\mathcal {T}_1}\right] \\= & {} A_{\tau _3} \exp \left[ -\Delta \sum ^3_{i=1} \mathcal {B}^{(i)}_{\tau _3} \tilde{\mathcal {M}}^{(i)}_{\mathcal {T}_1,\tau _2} +\frac{\Delta ^2}{2} \mathcal {B}^\top _{\tau _3} \mathcal {V}_{\tau _2} \mathcal {B}_{\tau _3} \right] . \end{aligned}$$

This implies

$$\begin{aligned} F_{\mathcal {T}_1,\mathcal {T}_2,\mathcal {T}_3} = \tilde{A}_{\tau _2,\tau _3} \exp \left[ -\Delta \sum ^3_{i=1} \tilde{\mathcal {B}}^{(i)}_{\tau _3} X^{(i)}_{\mathcal {T}_1} \right] \end{aligned}$$

where

$$\begin{aligned} \tilde{A}_{\tau _2,\tau _3}&= A_{\tau _3} \exp \bigg [ \frac{\Delta ^2}{2} \mathcal {B}^\top _{\tau _3} \mathcal {V}_{\tau _2} \mathcal {B}_{\tau _3} -\Delta \mathcal {B}^{(2)}_{\tau _3} (\theta ^\mathbb {Q}_2-\theta ^\mathbb {Q}_3)\left( 1-(1-\lambda )^{\tau _2}\right) \\&\quad \quad -\Delta \mathcal {B}^{(2)}_{\tau _3} \lambda \theta ^{\mathbb {Q}}_3 \left( \dfrac{\zeta _0(1-\lambda ,\tau _2+1)}{1-\lambda }-\tau _2(1-\lambda )^{\tau _2-1} \right) \bigg ) \\&\qquad -\Delta \mathcal {B}^{(3)}_{\tau _3} \theta ^\mathbb {Q}_3\left( 1-(1-\lambda )^{\tau _2}\right) \bigg ],\\ \tilde{\mathcal {B}}^{(1)}_{n}&= \mathcal {B}^{(1)}_{n}, \quad \tilde{\mathcal {B}}^{(2)}_{n} = \mathcal {B}^{(2)}_{n} (1-\lambda )^{n}, \quad \tilde{\mathcal {B}}^{(3)}_{n} = \mathcal {B}^{(3)}_{n} (1-\lambda )^{n} + \mathcal {B}^{(2)}_{n} \lambda n (1-\lambda )^{n-1}. \end{aligned}$$

\(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godin, F., Eghbalzadeh, R. & Gaillardetz, P. Pricing swaptions and zero-coupon futures options under the discrete-time arbitrage-free Nelson–Siegel model. Rev Deriv Res 26, 171–206 (2023). https://doi.org/10.1007/s11147-023-09196-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-023-09196-4

Keywords

JEL Classification

Navigation