Skip to main content
Log in

Phase field modeling of anisotropic fracture

  • S.I. : Non-Classical Cont Mech
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The main aim of the current study is to explore direction-dependent fracture initiation and propagation within an arbitrary anisotropic solid. In particular, the specific objective is to develop an anisotropic cohesive phase-field (PF) fracture model. In this model, weak and strong anisotropy is considered both in the strain energy and fracture energy. This is achieved by considering contributions to strain energy of fiber and matrix as in the case of fiber-reinforced composites (FRC) together with introducing anisotropy in fracture energy through higher-order structural tensors. Motivated from earlier works of Van den Bosch et al. (Eng Fract Mech 73:1220–1234, 2006), the PF fracture model is integrated with a coupled exponential cohesive zone law which considers both normal and tangential components of separation. Such a cohesive PF description has a strong micromechanical basis for fracture, requiring interface fracture toughness and ultimate traction in normal and tangential directions. \(C^0\) and \(C^1\) approximations are used for modeling the weak and strong anisotropy. Several numerical examples are presented to demonstrate the usefulness of the model developed herein. The obtained numerical results are validated with the experimental results from the literature. The anisotropic fracture resulting in either intergranular or transgranular failure of polycrystalline material is analyzed by adopting a coupled anisotropic phase field and cohesive zone approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Van den Bosch, M.J., Schreurs, P.J.G., Geers, M.G.D.: An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng. Fract. Mech. 73, 1220–1234 (2006)

    Article  Google Scholar 

  2. Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Elast. 46, 1319–1342 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Arteiro, A., Catalanotti, G., Reinoso, J., Linde, P., Camanho, P.P.: Simulation of the mechanical response of thin-ply composites: from computational micro-mechanics to structural analysis. Arch. Comput. Methods Eng. 26, 1445–1487 (2019)

    Article  MathSciNet  Google Scholar 

  5. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Srinivasa, A.R., Shin, H.Y., Thamburaja, P., Reddy, J.N.: Multiple cracking model in a 3d GraFEA framework. Contin. Mech. Thermodyn. 33, 1409–1428 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wu, J.Y., Huang, Y., Zhou, H., Nguyen, V.P.: Three-dimensional phase-field modeling of mode I+ II/III failure in solids. Comput. Methods Appl. Mech. Eng. 373, 113537 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Kasirajan, P., Bhattacharya, S., Rajagopal, A., Reddy, J.N.: Phase field modeling of fracture in quasi-brittle materials using natural neighbor Galerkin method. Comput. Methods Appl. Mech. Eng. 366, 113019 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55, 1017–1040 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Reddy, K.S.S., Amirtham, R., Reddy, J.N.: Modeling fracture in brittle materials with inertia effects using the phase field method. Mech. Adv. Mater. Struct. 30, 144–159 (2021)

    Article  Google Scholar 

  11. Dhaladhuli, P., Amirtham, R., Reddy, J.N.: Interaction between interfacial damage and crack propagation in quasi-brittle materials. Mech. Adv. Mater. Struct. 29, 3187–3208 (2022)

    Article  Google Scholar 

  12. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  13. Braides, A.: Approximation of Free-Discontinuity Problems. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  14. Leguillon, D.: Strength or toughness? a criterion for crack onset at a notch. Eur. J. Mech. A Solids 21, 61–72 (2002)

    Article  ADS  MATH  Google Scholar 

  15. Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids 119, 20–42 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wu, J.Y., Nguyen, V.P., Zhou, H., Huang, Y.: A variationally consistent phase-field anisotropic damage model for fracture. Comput. Methods Appl. Mech. Eng. 358, 112629 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Wu, J.Y., Nguyen, V.P., Nguyen, C.T., Sutula, D., Sinaie, S., Bordas, S.P.A.: Phase-field modeling of fracture. Adv. Appl. Mech. 53, 1–183 (2020)

    Article  Google Scholar 

  18. Takei, A., Roman, B., Bico, J., Hamm, E., Melo, F.: Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the Wulff plot. Phys. Rev. Lett. 110, 144301 (2013)

    Article  ADS  Google Scholar 

  19. Denli, F.A., Gültekin, O., Holzapfel, G.A., Dal, H.: A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites. Comput. Mech. 65, 1149–1166 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pranavi, D., Rajagopal, A., Reddy, J.N.: Interaction of anisotropic crack phase field with interface cohesive zone model for fiber reinforced composites. Compos. Struct. 270, 114038 (2021)

    Article  Google Scholar 

  21. Zhang, P., Hu, X., Bui, T.Q., Yao, W.: Phase field modeling of fracture in fiber reinforced composite laminate. Int. J. Mech. Sci. 161–162, 105008 (2019)

    Article  Google Scholar 

  22. Eggleston, J.J., McFadden, G.B., Voorhees, P.W.: A phase-field model for highly anisotropic interfacial energy. Physica D 150, 91–103 (2001)

    Article  ADS  MATH  Google Scholar 

  23. Li, B., Maurini, C.: Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy. J. Mech. Phys. Solids 125, 502–522 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Teichtmeister, S., Kienle, D., Aldakheel, F., Keip, M.-A.: Phase field modeling of fracture in anisotropic brittle solids. Int. J. Non-Linear Mech. 97, 1–21 (2017)

    Article  ADS  Google Scholar 

  25. Toptop, K., van Eijk, B., Geijselaers, H.J.M., Hessey, N.P.: Investigations on anisotropic fracture mechanics of graphitic foams. Results Phys. 7, 2043–2053 (2017)

    Article  ADS  Google Scholar 

  26. Khanlari, G., Rafiei, B., Abdilor, Y.: An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones. Arab. J. Geosci. 8, 3089–3102 (2015)

    Article  Google Scholar 

  27. Widmann, R., Beikircher, W.: Thermally modified beechwood as a structural material: allocation to European strength-classes and relevant grading procedures. In: World Conference on Timber Engineering (2010)

  28. The orthopedic institute. https://www.orthopedic-institute.org/fracture-care/types-of-fractures/

  29. Herring, C.: Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87 (1951)

    Article  ADS  MATH  Google Scholar 

  30. Bleyer, J., Alessi, R.: Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Comput. Methods Appl. Mech. Eng. 336, 213–236 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Rezaei, S., Mianroodi, J.R., Brepols, T., Reese, S.: Direction-dependent fracture in solids: atomistically calibrated phase-field and cohesive zone model. J. Mech. Phys. Solids 147, 104253 (2021)

    Article  MathSciNet  Google Scholar 

  32. Sukumar, N., Srolovitz, D.J., Baker, T.J., Prévost, J.H.: Brittle fracture in polycrystalline microstructures with the extended finite element method. Int. J. Numer. Methods Eng. 56, 2015–2037 (2003)

    Article  MATH  Google Scholar 

  33. Verhoosel, C.V., Gutiérrez, M.A.: Modelling inter-and transgranular fracture in piezoelectric polycrystals. Eng. Fract. Mech. 76, 742–760 (2009)

    Article  Google Scholar 

  34. Simone, A., Duarte, C.A., Van der Giessen, E.: A generalized finite element method for polycrystals with discontinuous grain boundaries. Int. J. Numer. Methods Eng. 67, 1122–1145 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sfantos, G.K., Aliabadi, M.H.: A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials. Int. J. Numer. Methods Eng. 69, 1590–1626 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, B., Peco, C., Millán, D., Arias, I., Arroyo, M.: Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int. J. Numer. Methods Eng. 102, 711–727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yvonnet, J., Baietto, M.C., Nguyen, T.T., Réthoré, J.: Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials. Int. J. Numer. Methods Eng. 60, 289–314 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Mandal, T.K., Nguyen, V.P., Wu, J.Y.: On a new high order phase field model for brittle and cohesive fracture: numerical efficiency, length scale convergence and crack kinking. Comput. Mater. Sci. 203, 111079 (2022)

    Article  Google Scholar 

  39. Nguyen, T.T., Réthoré, J., Yvonnet, J., Baietto, M.C.: Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials. Comput. Mech. 60, 289–314 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rajagopal, A., Fischer, P., Kuhl, E., Steinmann, P.: Natural element analysis of the Cahn–Hilliard phase-field model. Comput. Mech. 46, 471–493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cahill, L.M.A., Natarajan, S., Bordas, S.P.A., O’Higgins, R.M., McCarthy, C.T.: An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae. Compos. Struct. 107, 119–130 (2014)

    Article  Google Scholar 

  42. Nguyen, T.T., Yvonnet, J., Zhu, Q.Z., Bornert, M., Chateau, C.: A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput. Methods Appl. Mech. Eng. 312, 567–595 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Negi, A., Soni, A., Kumar, S.: An anisotropic localizing gradient damage approach for failure analysis of fiber reinforced composites. Compos. Struct. 294, 115677 (2022)

    Article  Google Scholar 

  44. Sukumar, N.: The natural element method in solid mechanics. Ph.D. thesis, Northwestern University (1998)

Download references

Acknowledgements

The authors would like to thank Prof. Arun Srinivasa, Department of Mechanical Engineering, Texas A &M University, College Station, Texas, USA for his valuable insights and timely discussions which helped to improve the manuscript. The last author (JNR) also acknowledges the support through a research grant from US Army ERDC, contract W912HZ19C0042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rajagopal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pranavi, D., Rajagopal, A. & Reddy, J.N. Phase field modeling of anisotropic fracture. Continuum Mech. Thermodyn. (2023). https://doi.org/10.1007/s00161-023-01260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-023-01260-6

Keywords

Navigation