Skip to main content
Log in

Free Vibration Analysis of Functionally Graded Sandwich Circular Cylindrical Shells with Auxetic Honeycomb Core Layer and Partially Filled with Liquid

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper addresses the vibrational responses of functionally graded auxetic sandwich circular cylindrical shells. The sandwich shell comprises two face sheets of functionally graded material and an auxetic honeycomb material featuring a negative Poisson's ratio that forms a core layer. The sandwich shell is partially or fully liquid-filled and rests on an elastic foundation. Under the assumption that the liquid is ideal, its irrotational motion is described using the velocity potential function. In order to achieve this objective, a model based on Reddy's third-order shear deformation theory and the Rayleigh–Ritz method is developed. The present model's accuracy is confirmed through examples that compare the study results and those available in literature. Finally, some new numerical results are obtained that show the liquid level, the volume fraction index, the auxetic core geometric parameters and the mechanical boundary conditions strongly impact the vibration frequency of the sandwich circular cylindrical shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amabili M, Paidoussis M, Lakis A (1998) Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom. J Sound Vib 213(2):259–299

    Article  Google Scholar 

  • Bochkarev S, Lekomtsev S, Matveenko V (2016) Hydrothermoelastic stability of functionally graded circular cylindrical shells containing a fluid. Mech Compos Mater 52(4):507–520

    Article  Google Scholar 

  • Choi J, Lakes R (1996) Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int J Fract 80(1):73–83

    Article  Google Scholar 

  • Cong PH, Duc ND (2021) Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments. Thin-Walled Struct 163:107748

    Article  Google Scholar 

  • Cong PH, Long PT, Van Nhat N, Duc ND (2019) Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer. Int J Mech Sci 152:443–453

    Article  Google Scholar 

  • Cong PH, Quyet PK, Duc ND (2021) Effects of lattice stiffeners and blast load on nonlinear dynamic response and vibration of auxetic honeycomb plates. Proc Inst Mech Eng C J Mech Eng Sci 235(23):7192–7211

    Article  Google Scholar 

  • Gao Q, Zhao X, Wang C, Wang L, Ma Z (2018) Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading. Mater Des 143:120–130

    Article  Google Scholar 

  • Goncalves P, Batista R (1987) Frequency response of cylindrical shells partially submerged or filled with liquid. J Sound Vib 113(1):59–70

    Article  Google Scholar 

  • Goncalves P, Ramos N (1996) Free vibration analysis of cylindrical tanks partially filled with liquid. J Sound Vib 195(3):429–444

    Article  Google Scholar 

  • Grima JN, Evans KE (2000) Auxetic behavior from rotating squares. J Mater Sci Lett 19(17):1563–1565

    Article  Google Scholar 

  • Huang W, Zhang W, Li DC, Ye N, Xie WB, Ren P (2016) Dynamic failure of honeycomb core sandwich structures subjected to underwater impulsive loads. Eur J Mech A Solids 60:39–51

    Article  Google Scholar 

  • Iqbal Z, Naeem MN, Sultana N, Arshad SH, Shah AG (2009) Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach. Appl Math Mech 30(11):1393–1404

    Article  MathSciNet  MATH  Google Scholar 

  • Izyan N, Viswanathan K, Aziz Z, Prabakar K (2016) Free vibration of layered cylindrical shells filled with fluid. Appl Math Mech 37(6):803–820

    Article  MathSciNet  MATH  Google Scholar 

  • Izyan MN, Aziz Z, Viswanathan K (2018) Free vibration of anti-symmetric angle-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory. Compos Struct 193:189–197

    Article  Google Scholar 

  • Izyan MN, Aziz Z, Ghostine R, Lee J, Viswanathan K (2019) Free vibration of cross-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory. Int J Press Vessels Pip 170:73–81

    Article  Google Scholar 

  • Ji M, Inaba K, Triawan F (2019) Vibration characteristics of cylindrical shells filled with fluid based on first-order shell theory. J Fluids Struct 85:275–291

    Article  Google Scholar 

  • Khuc PV, Dao BH, Le DX (2019) Analysis of nonlinear thermal dynamic responses of sandwich functionally graded cylindrical shells containing fluid. J Sandwich Struct Mater 21(6):1953–1974

    Article  Google Scholar 

  • Kim Y-W, Lee Y-S, Ko S-H (2004) Coupled vibration of partially fluid-filled cylindrical shells with ring stiffeners. J Sound Vib 276(3–5):869–897

    Article  Google Scholar 

  • Lakes R (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1041

    Article  Google Scholar 

  • Lakes R, Elms K (1993) Indentability of conventional and negative Poisson’s ratio foams. J Compos Mater 27(12):1193–1202

    Article  Google Scholar 

  • Lan X-K, Huang Q, Zhou T, Feng S-S (2020) Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading. Def Technol 16(3):617–626

    Article  Google Scholar 

  • Li B, Fu T (2022) Analysis of vibration characteristics of auxetic sandwich cylindrical shells resting on elastic foundation. J Sandw Struct Mater 24:1865–1882

    Article  MathSciNet  Google Scholar 

  • Li S, Li X, Wang Z, Wu G, Lu G, Zhao L (2016) Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading. Compos A Appl Sci Manuf 80:1–12

    Article  Google Scholar 

  • Li Y, Yao W, Wang T (2020) Free flexural vibration of thin-walled honeycomb sandwich cylindrical shells. Thin-Walled Struct 157:107032

    Article  Google Scholar 

  • Liu J, He W, Xie D (2018) Study on vibrational power flow propagation characteristics in a laminated composite cylindrical shell filled with fluid. Shock Vib 2018:1–19

    Article  Google Scholar 

  • Malekzadeh P, Farid M, Zahedinejad P, Karami G (2008) Three-dimensional free vibration analysis of thick cylindrical shells resting on two-parameter elastic supports. J Sound Vib 313(3–5):655–675

    Article  Google Scholar 

  • Miramini SM, Ohadi A (2019) Three-dimensional vibration of fluid-conveying laminated composite cylindrical shells with piezoelectric layers. Int J Struct Stab Dyn 19(03):1950026

    Article  MathSciNet  Google Scholar 

  • Moon FC, Shaw SW (1983) Chaotic vibrations of a beam with non-linear boundary conditions. Int J Non-Linear Mech 18(6):465–477

    Article  Google Scholar 

  • Mukhopadhyay T, Adhikari S (2016) Free-vibration analysis of sandwich panels with randomly irregular honeycomb core. J Eng Mech 142(11):06016008

    Article  Google Scholar 

  • Najafizadeh M, Isvandzibaei M (2007) Vibration of functionally graded cylindrical shells based on higher order shear deformation plate theory with ring support. Acta Mech 191(1):75–91

    Article  MATH  Google Scholar 

  • Nguyen NV, Nguyen-Xuan H, Nguyen TN, Kang J, Lee J (2021) A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement. Compos Struct 259:113213

    Article  Google Scholar 

  • Niino M, Hirai T, Watanabe R (1999) The functionally gradient materials. J Jpn Soc Compos Mat 13:257–264

    Article  Google Scholar 

  • Palomba G, Crupi V, Epasto G (2019) Collapse modes of aluminium honeycomb sandwich structures under fatigue bending loading. Thin-Walled Struct 145:106363

    Article  Google Scholar 

  • Pham H-A, Tran H-Q, Tran M-T, Nguyen V-L, Huong Q-T (2022) Free vibration analysis and optimization of doubly-curved stiffened sandwich shells with functionally graded skins and auxetic honeycomb core layer. Thin-Walled Struct 179:109571

    Article  Google Scholar 

  • Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Methods Eng 47(1–3):663–684

    Article  MATH  Google Scholar 

  • Reddy J, Liu C (1985) A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci 23(3):319–330

    Article  MATH  Google Scholar 

  • Shah AG, Mahmood T, Naeem MN, Arshad SH (2011) Vibration characteristics of fluid-filled cylindrical shells based on elastic foundations. Acta Mech 216(1):17–28

    Article  MATH  Google Scholar 

  • Shahbaztabar A, Izadi A, Sadeghian M, Kazemi M (2019) Free vibration analysis of FGM circular cylindrical shells resting on the Pasternak foundation and partially in contact with stationary fluid. Appl Acoust 153:87–101

    Article  Google Scholar 

  • Singh AK, Davidson BD, Zehnder AT, Hasseldine BPJ (2019) An analytical model for the response of carbon/epoxy-aluminum honeycomb core sandwich structures under quasi-static indentation loading. J Sandw Struct Mater 21(6):1930–1952

    Article  Google Scholar 

  • Thuy Anh VT, Quang VD, Duc ND, Thinh PN (2022) Impact of blast and mechanical loads on the shear deformable stiffened sandwich plate with an auxetic core layer in thermal environment. J Sandw Struct Mater 24(1):663–695

    Article  Google Scholar 

  • Wang Y, Wu D (2017) Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp Sci Technol 66:83–91

    Article  Google Scholar 

  • Wang Y, Zhao W, Zhou G, Wang C (2018) Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading. Int J Mech Sci 142:245–254

    Article  Google Scholar 

  • Wu XR, Yu HJ, Guo LC, Zhang L, Sun XY, Chai ZL (2019) Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure. Compos Struct 213:165–172

    Article  Google Scholar 

  • Xi Z, Yam L, Leung T (1997) Free vibration of a laminated composite circular cylindrical shell partially filled with fluid. Compos B Eng 28(4):359–374

    Article  Google Scholar 

  • Xiao D, Chen X, Li Y, Wu W, Fang D (2019) The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis. Mater Des 176:107840

    Article  Google Scholar 

  • Xue XW, Zhang CF, Chen W, Wu MP, Zhao JH (2019) Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass. Compos Struct 226:111223

    Article  Google Scholar 

  • Yang W, Li Z-M, Shi W, Xie B-H, Yang M-B (2004) Review on auxetic materials. J Mater Sci 39:3269–3279

    Article  Google Scholar 

  • Zhao X, Wei L, Wen D, Zhu G, Yu Q, Ma Z (2021) Bending response and energy absorption of sandwich beams with novel auxetic honeycomb core. Eng Struct 247:113204

    Article  Google Scholar 

  • Zhou X (2012) Vibration and stability of ring-stiffened thin-walled cylindrical shells conveying fluid. Acta Mech Solida Sin 25(2):168–176

    Article  Google Scholar 

  • Zhu X, Zhang J, Zhang W, Chen J (2019) Vibration frequencies and energies of an auxetic honeycomb sandwich plate. Mech Adv Mater Struct 26(23):1951–1957

    Article  Google Scholar 

Download references

Acknowledgements

The Foundation for Science and Technology Development of Ha Noi University of Civil Engineering - Ha Noi - Vietnam (Project code 26-2022/KHXDTD) provided support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu-Quoc Tran.

Appendix

Appendix

$$k^{aa} = \int\limits_{0}^{L} {\left( {A_{11} \zeta^{{\prime\prime}2} + A_{66} \frac{{n^{2} }}{{R^{2} }}\zeta^{{\prime}2} } \right){\text{d}}x} ;k^{ab} = \frac{n}{R}\int\limits_{0}^{L} {\left( {A_{12} \zeta^{{\prime\prime}} \zeta - A_{66} \zeta^{{\prime}2} } \right){\text{d}}x} ;$$
$$k^{ac} = \int\limits_{0}^{L} {\left( {\left( {\frac{{A_{12} }}{R} + c_{1} D_{12} \frac{{n^{2} }}{{R^{2} }}} \right)\zeta^{{\prime\prime}} \zeta - c_{1} D_{11} \zeta^{{\prime\prime}2} - 2c_{1} D_{66} \frac{{n^{2} }}{{R^{2} }}\zeta^{{\prime}2} } \right){\text{d}}x} ;$$
$$k^{ad} = \int\limits_{0}^{L} {\left( {\left( {B_{11} - c_{1} D_{11} } \right)\zeta^{{\prime\prime}2} + \left( {B_{66} - c_{1} D_{66} } \right)\frac{{n^{2} }}{{R^{2} }}\zeta^{{\prime}2} } \right){\text{d}}x} ;$$
$$k^{ae} = \frac{n}{R}\int\limits_{0}^{L} {\left( {\left( {B_{12} - c_{1} D_{12} } \right)\zeta^{{\prime\prime}} \zeta - \left( {B_{66} - c_{1} D_{66} } \right)\zeta^{{\prime}2} } \right)} {\text{d}}x;$$
$$k^{bb} = \int\limits_{0}^{L} {\left( {A_{22} \frac{{n^{2} }}{{R^{2} }}\zeta^{2} + A_{66} \zeta^{{\prime}2} } \right){\text{d}}x} ;k^{bc} = \frac{n}{R}\int\limits_{0}^{L} {\left( {\left( {\frac{{A_{22} }}{R} + c_{1} D_{22} \frac{{n^{2} }}{{R^{2} }}} \right)\zeta^{2} - c_{1} D_{12} \zeta^{{\prime\prime}} \zeta + 2c_{1} D_{66} \zeta^{{\prime}2} } \right){\text{d}}x} ;$$
$$k^{bd} = \frac{n}{R}\int\limits_{0}^{L} {\left( {\left( {B_{12} - c_{1} D_{12} } \right)\zeta^{{\prime\prime}} \zeta - \left( {B_{66} - c_{1} D_{66} } \right)\zeta^{{\prime}2} } \right)} {\text{d}}x;$$
$$k^{be} = \int\limits_{0}^{L} {\left( {\left( {B_{22} - c_{1} D_{22} } \right)\frac{{n^{2} }}{{R^{2} }}\zeta^{2} + \left( {B_{66} - c_{1} D_{66} } \right)\zeta^{{\prime}2} } \right){\text{d}}x} ;$$
$$k^{cc} = \int\limits_{0}^{L} {\left( \begin{gathered} \left( {\frac{{A_{22} }}{{R^{2} }} + 2c_{1} D_{22} \frac{{n^{2} }}{{R^{3} }} + c_{1}^{2} G_{22} \frac{{n^{4} }}{{R^{4} }} + \left( {A_{44}^{s} - 6c_{1} C_{44}^{s} + 9c_{1}^{2} E_{44}^{s} } \right)\frac{{n^{2} }}{{R^{2} }} + k_{w} + k_{p} \frac{{n^{2} }}{{R^{2} }}} \right)\zeta^{2} \hfill \\ - 2\left( {c_{1} \frac{{D_{12} }}{R} + c_{1}^{2} G_{12} \frac{{n^{2} }}{{R^{2} }}} \right)\zeta^{{\prime\prime}} \zeta + c_{1}^{2} G_{11} \zeta^{{\prime\prime}2} \hfill \\ + \left( {4c_{1}^{2} G_{66} \frac{{n^{2} }}{{R^{2} }} + \left( {A_{55}^{s} - 6c_{1} C_{55}^{s} + 9c_{1}^{2} E_{55}^{s} } \right) + k_{p} } \right)\zeta^{{\prime}2} \hfill \\ \end{gathered} \right){\text{d}}x} ;$$
$$k^{cd} = \int\limits_{0}^{L} {\left\{ \begin{gathered} \left[ {\frac{{B_{12} - c_{1} D_{12} }}{R} + \left( {c_{1} E_{12} - c_{1}^{2} G_{12} } \right)\frac{{n^{2} }}{{R^{2} }}} \right]\zeta^{{\prime\prime}} \zeta - \left( {c_{1} E_{11} - c_{1}^{2} G_{11} } \right)\zeta^{{\prime\prime}2} \hfill \\ \left[ { - 2\left( {c_{1} E_{66} - c_{1}^{2} G_{66} } \right)\frac{{n^{2} }}{{R^{2} }} + \left( {A_{55}^{s} - 6c_{1} C_{55}^{s} + 9c_{1}^{2} E_{55}^{s} } \right)} \right]\zeta^{{\prime}2} \hfill \\ \end{gathered} \right\}{\text{d}}x} ;$$
$$k^{ce} = \frac{n}{R}\int\limits_{0}^{L} {\left\{ \begin{gathered} \left[ {\frac{{B_{22} - c_{1} D_{22} }}{R} + \left( {c_{1} E_{22} - c_{1}^{2} G_{22} } \right)\frac{{n^{2} }}{{R^{2} }} - \left( {A_{44}^{s} - 6c_{1} C_{44}^{s} + 9c_{1}^{2} E_{44}^{s} } \right)} \right]\zeta^{2} \hfill \\ - \left( {c_{1} E_{12} - c_{1}^{2} G_{12} } \right)\zeta^{{\prime\prime}} \zeta + 2\left( {c_{1} E_{66} - c_{1}^{2} G_{66} } \right)\zeta^{{\prime}2} \hfill \\ \end{gathered} \right\}{\text{d}}x} ;$$
$$\begin{aligned} k^{dd} & = \int\limits_{0}^{L} {\left\{ {\left( {C_{11} - 2c_{1} E_{11} + c_{1}^{2} G_{11} } \right)\zeta^{{\prime\prime}2} } \right.} \\ & \quad + \left. {\left[ {\left( {C_{66} - 2c_{1} E_{66} + G_{66} c_{1}^{2} } \right)\frac{{n^{2} }}{{R^{2} }} + \left( {A_{55}^{s} - 6c_{1} C_{55}^{s} + 9c_{1}^{2} E_{55}^{s} } \right)} \right]\zeta^{{\prime}2} } \right\}{\text{d}}x; \\ \end{aligned}$$
$$k^{de} = \frac{n}{R}\int\limits_{0}^{L} {\left[ {\left( {C_{12} - 2c_{1} E_{12} + c_{1}^{2} G_{12} } \right)\zeta^{{\prime\prime}} \zeta - \left( {C_{66} - 2c_{1} E_{66} + c_{1}^{2} G_{66} } \right)\zeta^{{\prime}2} } \right]{\text{d}}x} ;$$
$$k^{ee} = \int\limits_{0}^{L} {\left( \begin{gathered} \left[ {\left( {C_{22} - 2c_{1} E_{22} + c_{1}^{2} G_{22} } \right)\frac{{n^{2} }}{{R^{2} }} + \left( {A_{44}^{s} - 6c_{1} C_{44}^{s} + 9c_{1}^{2} E_{44}^{s} } \right)} \right]\zeta^{2} \hfill \\ + \left( {C_{66} - 2c_{1} E_{66} + c_{1}^{2} G_{66} } \right)\zeta^{{\prime}2} \hfill \\ \end{gathered} \right){\text{d}}x} ;$$
$$m^{aa} = I_{0} \int\limits_{0}^{L} {\zeta^{{\prime}2} {\text{d}}x} ;m^{ac} = - c_{1} I_{3} \int\limits_{0}^{L} {\zeta^{{\prime}2} {\text{d}}x} ;\;m^{ad} = \left( {I_{1} - c_{1} I_{3} } \right)\int\limits_{0}^{L} {\zeta^{{\prime}2} {\text{d}}x} ;\;m^{bb} = \left( {I_{0} + \frac{{2I_{1} }}{R} + \frac{{I_{2} }}{{R^{2} }}} \right)\int\limits_{0}^{L} {\zeta^{2} {\text{d}}x} ;$$
$$m^{bc} = c_{1} n\left( {\frac{{I_{3} }}{R} + \frac{{I_{4} }}{{R^{2} }}} \right)\int\limits_{0}^{L} {\zeta^{2} {\text{d}}x} ;\;m^{be} = \left( {I_{1} + \frac{{I_{2} }}{R} - c_{1} I_{3} - c_{1} \frac{{I_{4} }}{R}} \right)\int\limits_{0}^{L} {\zeta^{2} {\text{d}}x} ;$$
$$m^{cc} = \int\limits_{0}^{L} {\left[ {\left( {I_{0} + c_{1}^{2} I_{6} \frac{{n^{2} }}{{R^{2} }}} \right)\zeta^{2} + c_{1}^{2} I_{6} \zeta^{{\prime}2} } \right]{\text{d}}x} + m_{fluid} ;\;m^{cd} = \left( {c_{1}^{2} I_{6} - c_{1} I_{4} } \right)\int\limits_{0}^{L} {\zeta^{{\prime}2} {\text{d}}x} ;$$
$$m^{ce} = \frac{n}{R}\left( {c_{1} I_{4} - c_{1}^{2} I_{6} } \right)\int\limits_{0}^{L} {\zeta^{2} {\text{d}}x} ;\;m^{dd} = \left( {I_{2} - 2c_{1} I_{4} + c_{1}^{2} I_{6} } \right)\int\limits_{0}^{L} {\zeta^{{\prime}2} {\text{d}}x} ;\;m^{ee} = \left( {I_{2} - 2c_{1} I_{4} + c_{1}^{2} I_{6} } \right)\int\limits_{0}^{L} {\zeta^{2} {\text{d}}x} ;$$
$$m_{{{\text{fluid}}}} = \frac{{8\rho_{f} }}{\pi }\sum\limits_{k = 1}^{NF} {\frac{{I_{n} \left( {\frac{{\left( {2k - 1} \right)\pi R}}{2H}} \right)}}{{\left( {2k - 1} \right)\Theta_{k} }}} \left[ {\int\limits_{0}^{H} {\zeta \cos \left( {\frac{{\left( {2k - 1} \right)\pi x}}{2H}} \right){\text{d}}x} } \right]^{2}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, TB., Tran, HQ., Nguyen, VL. et al. Free Vibration Analysis of Functionally Graded Sandwich Circular Cylindrical Shells with Auxetic Honeycomb Core Layer and Partially Filled with Liquid. Iran J Sci Technol Trans Mech Eng (2023). https://doi.org/10.1007/s40997-023-00712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40997-023-00712-3

Keywords

Navigation