Skip to main content
Log in

Neutrophils Are Atypical Antigen-Presenting Cells

  • REVIEW
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Neutrophils are the most numerous blood leukocytes and are the “first line” of defense against pathogens in the focus of inflammation, where they perform effector functions of phagocytosis, degranulation, generation of reactive oxygen species, and the formation of neutrophil extracellular traps. It was believed for a long time that neutrophils are short-lived terminally differentiated phagocytes. However, this view changed after it was discovered that neutrophils are able to interact with other populations of leukocytes as well as being responsible for the relationship between innate and adaptive immunity. A lot of data indicating the ability of neutrophils to acquire the function of antigen-presenting cells in pathological and inflammatory conditions has accumulated in recent years. In addition, neutrophils can express major histocompatibility complex class II molecules and costimulatory molecules when exposed to specific cytokines in the in vitro system and activate T lymphocytes. The review summarizes recent data on the antigen-presenting function of neutrophils, the proposed mechanisms of regulation of this process, and its significance in normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y., and Zychlinsky, A., Neutrophil extracellular traps kill bacteria, Science, 2004, vol. 303, no. 5663, pp. 1532–1535.

    Article  CAS  PubMed  Google Scholar 

  2. Borregaard, N., Sørensen, O.E., and Theilgaard-Mönch, K., Neutrophil granules: a library of innate immunity proteins, Trends Immunol., 2007, vol. 28, no. 8, pp. 340–345.

    Article  CAS  PubMed  Google Scholar 

  3. Price, T.H., Chatta, G.S., and Dale, D.C., Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans, Blood, 1996, vol. 88, no. 1, pp. 335–340.

    Article  CAS  PubMed  Google Scholar 

  4. Galli, S.J., Borregaard, N., and Wynn, T.A., Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils, Nat. Immunol., 2011, vol. 12, no. 11, pp. 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dancey, J.T., Deubelbeiss, K.A., Harker, L.A., and Finch, C.A., Neutrophil kinetics in man, J. Clin. Invest., 1976, vol. 58, no. 3, pp. 705–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin, C., Burdon, P.C., Bridger, G., Gutierrez-Ramos, J.C., Williams, T.J., and Rankin, S.M., Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence, Immunity, 2003, vol. 19, no. 4, pp. 583–593.

    Article  CAS  PubMed  Google Scholar 

  7. Westman, J., Grinstein, S., and Marques, P.E., Phagocytosis of necrotic debris at sites of injury and inflammation, Front. Immunol., 2020, vol. 10, p. 3030.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dalli, J., Montero-Melendez, T., Norling, L.V., Yin, X., Hinds, C., Haskard, D., Mayr, M., and Perretti, M., Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties, Mol. Cell. Proteomics, 2013, vol. 12, no. 8, pp. 2205–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Polak, D., Hafner, C., Briza, P., Kitzmüller, C., Elbe-Bürger, A., Samadi, N., Gschwandtner, M., Pfützner, W., Zlabinger, G.J., Jahn-Schmid, B., and Bohle, B., A novel role for neutrophils in IgE-mediated allergy: Evidence for antigen presentation in late-phase reactions, J. Allergy Clin. Immunol., 2019, vol. 143, no. 3, pp. 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  10. Oehler, L., Majdic, O., Pickl, W.F., Stöckl, J., Riedl, E., Drach, J., Rappersberger, K., Geissler, K., and Knapp, W., Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics, J. Exp. Med., 1998, vol. 187, no. 7, pp. 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayashi, F., Means, T.K., and Luster, A.D., Toll-like receptors stimulate human neutrophil function, Blood, 2003, vol. 102, no. 7, pp. 2660–2669.

    Article  CAS  PubMed  Google Scholar 

  12. Metzemaekers, M., Gouwy, M., and Proost, P., Neutrophil chemoattractant receptors in health and disease: Double-edged swords, Cell. Mol. Immunol., 2020, vol. 17, no. 5, pp. 433–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nauseef, W.M., How human neutrophils kill and degrade microbes: An integrated view, Immunol. Rev., 2007, vol. 219, no. 1, pp. 88–102.

    Article  CAS  PubMed  Google Scholar 

  14. Liew, P.X. and Kubes, P., The neutrophil’s role during health and disease, Physiol. Rev., 2019, vol. 99, no. 2, pp. 1223–1248.

    Article  CAS  PubMed  Google Scholar 

  15. Steinberg, B.E. and Grinstein, S., Unconventional roles of the NADPH oxidase: Signaling, ion homeostasis, and cell death, Sci. STKE, 2007, vol. 2007, no. 379, p. pe11.

    Article  PubMed  Google Scholar 

  16. Vorobjeva, N.V. and Chernyak, B.V., NETosis: Molecular mechanisms, role in physiology and pathology, Biochemistry (Moscow), 2020, vol. 85, no. 10, pp. 1178–1190.

    CAS  PubMed  Google Scholar 

  17. Vorobjeva, N.V., Neutrophil extracellular traps: New aspects, Moscow Univ. Biol. Sci. Bull., 2020, vol. 75, no. 4, pp. 173–188.

    Article  CAS  PubMed  Google Scholar 

  18. Vorobjeva, N., Dagil, Y., Pashenkov, M., Pinegin, B., and Chernyak, B., Protein kinase C isoforms mediate the formation of neutrophil extracellular traps, Int. Immunopharmacol., 2023, vol. 114, p. 109448.

    Article  CAS  PubMed  Google Scholar 

  19. Pinegin, B., Vorobjeva, N., and Pinegin, V., Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity, Autoimmune Rev., 2015, vol. 14, no. 7, pp. 633–640.

    CAS  Google Scholar 

  20. Tecchio, C., Micheletti, A., and Cassatella, M.A., Neutrophil-derived cytokines: Facts beyond expression, Front. Immunol., 2014, vol. 5, p. 508.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Robertson, A.L., Holmes, G.R., Bojarczuk, A.N., et al., A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism, Sci. Transl. Med., 2014, vol. 6, no. 225, p. 225ra29.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scapini, P. and Cassatella, M.A., Social networking of human neutrophils within the immune system, Blood, 2014, vol. 124, no. 5, pp. 710–719.

    Article  CAS  PubMed  Google Scholar 

  23. Tsuboi, N., Asano, K., Lauterbach, M., and Mayadas, T.N., Human neutrophil Fcγ receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases, Immunity, 2008, vol. 28, no. 6, pp. 833–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puga, I., Cols, M., Barra, C.M., et al., B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen, Nat. Immunol., 2011, vol. 13, no. 2, pp. 170–180.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pelletier, M., Maggi, L., Micheletti, A., Lazzeri, E., Tamassia, N., Costantini, C., Cosmi, L., Lunardi, C., Annunziato, F., Romagnani, S., and Cassatella, M.A., Evidence for a cross-talk between human neutrophils and Th17 cells, Blood, 2010, vol. 115, no. 2, pp. 335–343.

    Article  CAS  PubMed  Google Scholar 

  26. Kambayashi, T. and Laufer, T.M., Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell?, Nat. Rev. Immunol., 2014, vol. 14, no. 11, pp. 719–730.

    Article  CAS  PubMed  Google Scholar 

  27. Reis e Sousa, C., Dendritic cells in a mature age, Nat. Rev. Immunol., 2006, vol. 6, no. 6, pp. 476–483.

    Article  CAS  PubMed  Google Scholar 

  28. Takashima, A. and Yao, Y., Neutrophil plasticity: Acquisition of phenotype and functionality of antigen-presenting cell, J. Leukocyte Biol., 2015, vol. 98, no. 4, pp. 489–496.

    Article  CAS  PubMed  Google Scholar 

  29. Vono, M., Lin, A., Norrby-Teglund, A., Koup, R.A., Liang, F., and Loré, K., Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo, Blood, 2017, vol. 129, no. 14, pp. 1991–2001.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Harding, C.V. and Unanue, E.R., Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation, Nature, 1990, vol. 346, no. 6284, pp. 574–576.

    Article  CAS  PubMed  Google Scholar 

  31. Gosselin, E.J., Wardwell, K., Rigby, W.F., and Guyre, P.M., Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3, J. Immunol., 1993, vol. 151, no. 3, pp. 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  32. Radsak, M., Iking-Konert, C., Stegmaier, S., Andrassy, K., and Hänsch, G.M., Polymorphonuclear neutrophils as accessory cells for T-cell activation: major histocompatibility complex class II restricted antigen-dependent induction of T-cell proliferation, Immunology, 2000, vol. 101, no. 4, pp. 521–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsushima, H., Geng, S., Lu, R., Okamoto, T., Yao, Y., Mayuzumi, N., Kotol, P.F., Chojnacki, B.J., Miyazaki, T., Gallo, R.L., and Takashima, A., Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells, Blood, 2013, vol. 121, no. 10, pp. 1677–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oehler, L., Majdic, O., Pickl, W.F., Stöckl, J., Riedl, E., Drach, J., Rappersberger, K., Geissler, K., and Knapp, W., Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics, J. Exp. Med., 1998, vol. 187, no. 7, pp. 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iking-Konert, C., Csekö, C., Wagner, C., Stegmaier, S., Andrassy, K., and Hänsch, G.M., Transdifferentiation of polymorphonuclear neutrophils: acquisition of CD83 and other functional characteristics of dendritic cells, J. Mol. Med., 2001, vol. 79, no. 8, pp. 464–474.

    Article  CAS  PubMed  Google Scholar 

  36. Spagnoli, G.C., Juretic, A., Rosso, R., Van Bree, J., Harder, F., and Heberer, M., Expression of HLA-DR in granulocytes of polytraumatized patients treated with recombinant human granulocyte macrophage–colony-stimulating factor, Hum. Immunol., 1995, vol. 43, no. 1, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  37. Sandilands, G.P., McCrae, J., Hill, K., Perry, M., and Baxter, D., Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils, Immunology, 2006, vol. 119, no. 4, pp. 562–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cross, A., Bucknall, R.C., Cassatella, M.A., Edwards, S.W., and Moots, R.J., Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis, Arthritis Rheumatol., 2003, vol. 48, no. 10, pp. 2796–2806.

    Article  CAS  Google Scholar 

  39. Iking-Konert, C., Vogt, S., Radsak, M., Wagner, C., Hänsch, G.M., and Andrassy, K., Polymorphonuclear neutrophils in Wegener’s granulomatosis acquire characteristics of antigen presenting cells, Kidney Int., 2001, vol. 60, no. 6, pp. 2247–2262.

    Article  CAS  PubMed  Google Scholar 

  40. Müller, I., Munder, M., Kropf, P., and Hänsch, G.M., Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms?, Trends Immunol., 2009, vol. 30, no. 11, pp. 522–530.

    Article  PubMed  Google Scholar 

  41. Sandilands, G.P., Hauffe, B., Loudon, E., Marsh, A.G., Gondowidjojo, A., Campbell, C., Ferrier, R.K., and Rodie, M.E., Detection of cytoplasmic CD antigens within normal human peripheral blood leucocytes, Immunology, 2003, vol. 108, no. 3, pp. 329–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sandilands, G.P., Ahmed, Z., Perry, N., Davison, M., Lupton, A., and Young, B., Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation, Immunology, 2005, vol. 114, no. 3, pp. 354–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elsen, P.J., Expression regulation of major histocompatibility complex class I and class II encoding genes, Front. Immunol., 2011, vol. 2, p. 48.

    PubMed  PubMed Central  Google Scholar 

  44. Berard, M. and Tough, D.F., Qualitative differences between naïve and memory T cells, Immunology, 2002, vol. 106, no. 2, pp. 127–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ethuin, F., Gérard, B., Benna, J.E., Boutten, A., Gougereot-Pocidalo, M.A., Jacob, L., and Chollet-Martin, S., Human neutrophils produce interferon gamma upon stimulation by interleukin-12, Lab. Invest., 2004, vol. 84, no. 10, pp. 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  46. Abi Abdallah, D.S., Egan, C.E., Butcher, B.A., and Denkers, E.Y., Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 differentiation, Int. Immunol., 2011, vol. 23, no. 5, pp. 317–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feuk-Lagerstedt, E., Jordan, E.T., Leffler, H., Dahlgren, C., and Karlsson, A., Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils, J. Immunol., 1999, vol. 163, no. 10, pp. 5592–5598.

    Article  CAS  PubMed  Google Scholar 

  48. Pantouris, G., Syed, M.A., Fan, C., Rajasekaran, D., Cho, T.Y., Rosenberg, E.M. Jr., Bucala, R., Bhandari, V., and Lolis, E.J., An analysis of MIF structural features that control functional activation of CD74, Chem. Biol., 2015, vol. 22, no. 9, pp. 1197–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tato, M., Kumar, S.V., Liu, Y., Mulay, S.R., Moll, S., Popper, B., Eberhard, J.N., Thomasova, D., Rufer, A.C., Gruner, S., Haap, W., Hartmann, G., and Anders, H.J., Cathepsin S inhibition combines control of systemic and peripheral pathomechanisms of autoimmune tissue injury, Sci. Rep., 2017, vol. 7, no. 1, p. 2775.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nordenfelt, P. and Tapper, H., Phagosome dynamics during phagocytosis by neutrophils, J. Leukocyte Biol., 2011, vol. 90, no. 2, pp. 271–284.

    Article  CAS  PubMed  Google Scholar 

  51. Vorob’eva, N.V., The molecular mechanisms of phagocytosis. Part 1, Ross. Immunol. Zh., 2014, vol. 8, no. 2, pp. 107–120.

    Google Scholar 

  52. Fernando, M.M., Stevens, C.R., Walsh, E.C., De Jager, P.L., Goyette, P., Plenge, R.M., Vyse, T.J., and Rioux, J.D., Defining the role of the MHC in autoimmunity: A review and pooled analysis, PLoS Genet., 2008, vol. 4, no. 4, p. e1000024.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Potter, N.S. and Harding, C.V., Neutrophils process exogenous bacteria via an alternate class I MHC processing pathway for presentation of peptides to T lymphocytes, J. Immunol., 2001, vol. 167, no. 5, pp. 2538–2546.

    Article  CAS  PubMed  Google Scholar 

  54. Beauvillain, C., Delneste, Y., Scotet, M., Peres, A., Gascan, H., Guermonprez, P., Barnaba, V., and Jeannin, P., Neutrophils efficiently cross-prime naive T cells in vivo, Blood, 2007, vol. 110, no. 8, pp. 2965–2973.

    Article  CAS  PubMed  Google Scholar 

  55. Davey, M.S., Morgan, M.P., Liuzzi, A.R., Tyler, C.J., Khan, M.W.A., Szakmany, T., Hall, J.E., Moser, B., and Eberl, M., Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells, J. Immunol., 2014, vol. 193, no. 7, pp. 3704–3716.

    Article  CAS  PubMed  Google Scholar 

  56. Singhal, S., Bhojnagarwala, P.S., O’Brien, S., Moon, E.K., Garfall, A.L., Rao, A.S., Quatromoni, J.G., Stephen, T.L., Litzky, L., Deshpande, C., Feldman, M.D., Hancock, W.W., Conejo-Garcia, J.R., Albelda, S.M., and Eruslanov, E.B., Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer, Cancer Cell, 2016, vol. 30, no. 1, pp. 120–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hampton, H.R. and Chtanova, T., The lymph node neutrophil, Semin. Immunol., 2016, vol. 28, no. 2, pp. 129–136.

    Article  CAS  PubMed  Google Scholar 

  58. Abadie, V., Badell, E., Douillard, P., Ensergueix, D., Leenen, P.J., Tanguy, M., Fiette, L., Saeland, S., Gicquel, B., and Winter, N., Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes, Blood, 2005, vol. 106, no. 5, pp. 1843–1850.

    Article  CAS  PubMed  Google Scholar 

  59. Liang, F., Lindgren, G., Sandgren, K.J., Thompson, E.A., Francica, J.R., Seubert, A., De Gregorio, E., Barnett, S., O’Hagan, D.T., Sullivan, N.J., Koup, R.A., Seder, R.A., and Loré, K., Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake, Sci. Transl. Med., 2017, vol. 9, no. 393, p. eaal2094.

Download references

Funding

The work was supported by the project “Molecular and Cellular Bases of Immunity” (no. 21-1-21, CITIS no. 121042600047-9) and the Interdisciplinary Scientific and Educational School of Moscow University “Molecular Technologies of the Living Systems and Synthetic Biology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.V. Vorobjeva.

Ethics declarations

CONFLICT OF INTEREST

The author declares that he has no conflicts of interest.

STATEMENT ON THE WELFARE OF ANIMALS

The study was conducted without the use of animals and without involving people as subjects.

Additional information

Translated by M. Shulskaya

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobjeva, N. Neutrophils Are Atypical Antigen-Presenting Cells. Moscow Univ. Biol.Sci. Bull. 78, 45–52 (2023). https://doi.org/10.3103/S0096392523020104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392523020104

Keywords:

Navigation