Skip to main content
Log in

Adaptation of Green Photosynthetic Bacteria to Different Illumination According to Spectroscopy Data on Chlorosomes

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The absorption and circular dichroism spectra of the chlorosomes isolated from green photosynthetic Chloroflexus aurantiacus bacteria grown under different illumination were studied. It was found that the spectra shift to a red side and become narrower and larger in amplitude as this illumination decreases. A theoretical modeling of data obtained was carried out using a theory of excitons. It was concluded that the number of bacteriochlorophyll c molecules in the linear chains (that form a basis of the elementary blocks of chlorosomes) increases as the intensity of light, under which bacteria are grown, decreases. It was suggested that this phenomenon increases the efficiency of capturing weak light fluxes and, thus, increases the chances of bacterial survival in conditions of sunlight deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Oelze, J. and Golecki, J., Membranes and chlorosomes of green bacteria: structure, composition and development, in Anoxygenic Photosynthetic Bacteria, Blankenship, R.E., Madigan, M.T., and Bauer, C.E., Eds., Amsterdam: Kluwer Acad., 1995, pp. 259–278.

    Google Scholar 

  2. Frigaard, N.-U. and Bryant, D., Chlorosomes: antenna organelles in green photosynthetic bacteria, Microbiology Monographs, vol. 2: Complex intracellular structures in prokaryotes., Shively, J.M., Ed., Berlin: Springer-Verlag, 2006, pp. 79–114.

  3. Krasnovsky, A. and Bystrova, M., Self-assembly of chlorophyll aggregated structures, BioSystems, 1980, vol. 12, no. 3, pp. 181–194.

    Article  CAS  PubMed  Google Scholar 

  4. Smith, K., Kehres, L., and Fajer, J., Aggregation of bacteriochlorophylls c, d or e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria, J. Am. Chem. Soc., 1983, vol. 105, no. 5, pp. 1387–1389.

    Article  CAS  Google Scholar 

  5. Fetisova, Z.G. and Fok, M.V., Means of optimizing conversion of light energy in the primary stages of photosynthesis. I. The need for optimizing the structure of a photosynthetic unit and calculation of its efficiency, Mol. Biol., 1984, vol. 18, no. 6, pp. 1354–1359.

    Google Scholar 

  6. Staehelin, L., Golecki, J., Fuller, R., and Drews, G., Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus, Arch. Microbiol., 1978, vol. 119, no. 3, pp. 269–277.

    Article  Google Scholar 

  7. Sprague, S., Staehelin, L., DiBartolomeis, M., and Fuller, R., Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus, J. Bacteriol., 1981, vol. 147, no. 3, pp. 1021–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saga, Y. and Tamiaki, H., Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria, J. Biosci. Bioeng., 2006, vol. 102, no. 2, pp. 18–23.

    Article  Google Scholar 

  9. Egawa, A., Fujiwara, T., Mizoguchi, T., Kakitani, Y., Koyama, Y., and Akutsu, H., Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 3, pp. 790–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ganapathy, S., Oostergetel, G., Wawrzyniak, P., Reus, M., Gomez Maqueo Chew, A., Buda, F., Boekema, E., Bryant, D., Holzwarth, A., and de Groot, H., Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 21, pp. 8525–8530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Günther, L., Jendrny, M., Bloemsma, E., Tank, M., Oostergetel, G., Bryant, D., Knoester, J., and Köhler, J., Structure of light-harvesting aggregates in individual chlorosomes, J. Phys. Chem. B, 2016, vol. 120, no. 24, pp. 5367−5376.

    Article  PubMed  Google Scholar 

  12. Pšenčik, J., Ikonen, T., Laurinmäki, P., Merckel, M., Butcher, S., Serimaa, R., and Tuma, R., Lamellar organization of pigments in chlorosomes, the light harvesting system of green bacteria, Biophys. J., 2004, vol. 87, no. 2, pp. 1165–1172.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pšenčik, J., Torkkeli, M., Zupčanová, A., Vácha, F., Serimaa, R., and Tuma, R., The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol, Photosynth. Res., 2010, vol. 104, no. 2, pp. 211–219.

    Article  PubMed  Google Scholar 

  14. Van Dorssen, R.J., Vasmel, H., and Amesz, J., Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosome, Photosynth. Res., 1986, vol. 9, no. 1, pp. 33–45.

    Article  CAS  PubMed  Google Scholar 

  15. Novoderezhkin, V., Taisova, A., Fetisova, Z., Blankenship, R., Savikhin, S., Buck, D., and Struve, W., Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus, Biophys. J., 1998, vol. 74, no. 4, pp. 2069–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Linnanto, J. and Korppi-Tommola, J., Exciton description of chlorosome to baseplate excitation energy transfer in filamentous anoxygenic phototrophs and green sulfur bacteria, J. Phys. Chem. B, 2013, vol. 117, no. 38, pp. 11144−11161.

    Article  CAS  PubMed  Google Scholar 

  17. Pierson, B. and Castenholz, R., Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium, Arch. Microbiol., 1974, vol. 100, no. 1, pp. 283−305.

    Article  CAS  Google Scholar 

  18. Schmidt, K., Maarzahl, M., and Mayer, F., Development and pigmentation of chlorosomes in Chloroflexus aurantiacus Ok-70-fl, Arch. Microbiol., 1980, vol. 127, no. 2, pp. 87−97.

    Article  CAS  Google Scholar 

  19. Taisova, A., Keppen, O., Lukashev, E., Arutyunyan, A., and Fetisova, Z., Study of the chlorosomal antenna of the green mesophilic filamentous bacterium Oscillochloris trichoides, Photosynth. Res., 2002, vol. 74, no. 1, pp. 73−85.

    Article  CAS  PubMed  Google Scholar 

  20. Davydov, A.S., Teoriya molekulyarnykh eksitonov (Theory of Molecular Excitons), Moscow: Nauka, 1968.

  21. Fetisova, Z., Freiberg, A., Mauring, K., Novoderezhkin, V., Taisova, A., and Timpmann, K., Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies, Biophys. J., 1996, vol. 71, no. 2, pp. 995−1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mauring, K., Novoderezhkin, V., Taisova, A., and Fetisova, Z., Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8-293 K fluorescence spectroscopy, FEBS Lett., 1999, vol. 456, no. 2, pp. 239−242.

    Article  CAS  PubMed  Google Scholar 

  23. Gülen, D., Significance of the excitonic intensity borrowing in the J-/H-aggregates of bacteriochlorophylls/chlorophylls, Photosynth. Res., 2006, vol. 87, no. 2, pp. 205–214.

    Article  PubMed  Google Scholar 

  24. Oostergetel, G., van Amerongen, H., and Boekema, E., The chlorosome: a prototype for efficient light harvesting in photosynthesis, Photosynth. Res., 2010, vol. 104, no. 2, pp. 245−255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scholes, G.D., Fleming, G.R., Alexandra Olaya-Castro, A., and van Grondelle, R., Lessons from nature about solar light harvesting, Nat. Chem., 2011, vol. 3, no. 10, pp. 763−774.

    Article  CAS  PubMed  Google Scholar 

  26. Golecki, J. and Oelze, J., Quantitative relationship between bactenochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus, Arch. Microbiol., 1987, vol. 148, no. 3, pp. 236−241.

    Article  CAS  Google Scholar 

  27. Furumaki, S., Vácha, F., Habuchi, S., Tsukatani, Y., Bryant, D., and Vacha, M., Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria, J. Am. Chem. Soc., 2011, vol. 133, no. 17, pp. 6703−6710.

    Article  CAS  PubMed  Google Scholar 

  28. Linnanto, J. and Korppi-Tommola, J., Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates, Photosynth. Res., 2008, vol. 96, no. 3, pp. 227–245.

    Article  CAS  PubMed  Google Scholar 

  29. Prokhorenko, V.I., Steensgaard, D.B., and Holzwarth, A.R., Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum, Biophys. J., 2000, vol. 79, no. 4, pp. 2105–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Furumaki, S., Yabiku, Y., Habuchi, S., Tsukatani, Y., Bryant, D., and Vacha, M., Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria, J. Phys. Chem. Lett., 2012, vol. 3, no. 23, pp. 3545−3549.

    Article  CAS  PubMed  Google Scholar 

  31. Jendrny, M., Aartsma, T., and Kӧhler, J., Insights into the excitonic states of individual chlorosomes from Chlorobaculum tepidum, Biophys. J., 2014, vol. 106, no. 9, pp. 1921−1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hartigan, N., Tharia, H., Sweeney, F., Lawless, A., and Papiz, M., The 7.5-Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris, Biophys. J., 2002, vol. 82, no. 2, pp. 963−977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.M. Arutyunyan for the assistance in measuring CD spectra.

Funding

This work was supported by the state task “Photobiophysics of Solar Energy Conversion in Living Systems” (no. AAAA-A17-117120540070-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Yakovlev, A. S. Taisova or Z. G. Fetisova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals and human participants.

Additional information

Translated by A. Barkhash

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.G., Taisova, A.S. & Fetisova, Z.G. Adaptation of Green Photosynthetic Bacteria to Different Illumination According to Spectroscopy Data on Chlorosomes. Moscow Univ. Biol.Sci. Bull. 78, 53–58 (2023). https://doi.org/10.3103/S0096392523020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392523020116

Keywords:

Navigation