Skip to main content

Advertisement

Log in

Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC50 of 38.42 μM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the KA-binding constant of 3.09 × 105 L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH–SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Welte T et al (2019) Ceftaroline fosamil as a potential treatment option for Staphylococcus aureus community-acquired pneumonia in adults. Int J Antimicrob Agents 54(4):410–422

    Article  CAS  PubMed  Google Scholar 

  2. Jean SS et al (2023) Off-label use versus formal recommendations of conventional and novel antibiotics for the treatment of infections caused by multidrug-resistant bacteria. Int J Antimicrob Agents 61:106763

    Article  CAS  PubMed  Google Scholar 

  3. Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9(2):117–128

    Article  CAS  PubMed  Google Scholar 

  4. Escaich S (2010) Novel agents to inhibit microbial virulence and pathogenicity. Expert Opin Ther Pat 20(10):1401–1418

    Article  CAS  PubMed  Google Scholar 

  5. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7(9):629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheung GYC, Bae JS, Otto M (2021) Pathogenicity and virulence of Staphylococcus aureus. Virulence 12(1):547–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Munkholm L, Rubin O (2020) The global governance of antimicrobial resistance: a cross-country study of alignment between the global action plan and national action plans. Global Health 16(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reyes J et al (2023) Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): a prospective cohort study. Lancet Microbe 4:e159–e170

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stanley D, Batacan R Jr, Bajagai YS (2022) Rapid growth of antimicrobial resistance: the role of agriculture in the problem and the solutions. Appl Microbiol Biotechnol 106(21):6953–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sánchez-Álvarez BP et al (2022) Current status of antimicrobial resistance in pediatric population in a Mexican hospital. Rev Med Inst Mex Seguro Soc 60(4):371–378

    PubMed  PubMed Central  Google Scholar 

  11. Ni S et al (2020) Targeting virulence factors as an antimicrobial approach: pigment inhibitors. Med Res Rev 40(1):293–338

    Article  PubMed  Google Scholar 

  12. Mohamad F et al (2023) An explorative review on advanced approaches to overcome bacterial resistance by curbing bacterial biofilm formation. Infect Drug Resist 16:19–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oliveira D, Borges A, Simões M (2018) Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel) 10(6):252

    Article  PubMed  Google Scholar 

  14. Mazmanian SK et al (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285(5428):760–763

    Article  CAS  PubMed  Google Scholar 

  15. Mazmanian SK, Ton-That H, Schneewind O (2001) Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol 40(5):1049–1057

    Article  CAS  PubMed  Google Scholar 

  16. Siegel SD, Reardon ME, Ton-That H (2017) Anchoring of LPXTG-like proteins to the gram-positive cell wall envelope. Curr Top Microbiol Immunol 404:159–175

    CAS  PubMed  Google Scholar 

  17. Sahoo A et al (2022) In silico identification of potential insect peptides against biofilm-producing Staphylococcus aureus. Chem Biodivers 19(10):e202200494

    Article  CAS  PubMed  Google Scholar 

  18. O’Neill E et al (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins. FnBPA and FnBPB J Bacteriol 190(11):3835–3850

    Article  CAS  PubMed  Google Scholar 

  19. Tsompanidou E et al (2012) The sortase A substrates FnbpA, FnbpB, ClfA and ClfB antagonize colony spreading of Staphylococcus aureus. PLoS ONE 7(9):e44646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Merino N et al (2009) Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 191(3):832–843

    Article  CAS  PubMed  Google Scholar 

  21. Wang J et al (2016) Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Sci Rep 6:32699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang L et al (2015) A coagulase-negative and non-haemolytic strain of Staphylococcus aureus for investigating the roles of SrtA in a murine model of bloodstream infection. Pathog Dis 73(6):ftv042

    Article  PubMed  Google Scholar 

  23. Sato T et al (1985) Pharmacological studies on Cistanchis herba. Effects of the constituents of Cistanchis herba on sex and learning behavior in chronic stressed mice (1). Yakugaku Zasshi 105(12):1131–1144

    Article  CAS  PubMed  Google Scholar 

  24. Liu J et al (2018) Echinacoside, an inestimable natural product in treatment of neurological and other disorders. Molecules 23(5):1213

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thida M et al (2021) Echinacoside alleviates acetaminophen-induced liver injury by attenuating oxidative stress and inflammatory cytokines in mice. J Appl Biomed 19(2):105–112

    Article  PubMed  Google Scholar 

  26. Kong ZL et al (2018) Effect of cistanche tubulosa extracts on male reproductive function in streptozotocin-nicotinamide-induced diabetic rats. Nutrients 10(10):1562

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ni Y et al (2022) Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH/ROS/ER stress. J Cell Mol Med 26(21):5414–5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang D et al (2017) Echinacoside alleviates UVB irradiation-mediated skin damage via inhibition of oxidative stress, DNA damage, and apoptosis. Oxid Med Cell Longev 2017:6851464

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lacy MK et al (2004) Antibiograms: new NCCLS guidelines, development, and clinical application. Hosp Pharm 39(6):542–553

    Article  Google Scholar 

  30. Chiu CT et al (2021) Comparative analysis of gradient diffusion and disk diffusion with agar dilution for susceptibility testing of Elizabethkingia anophelis. Antibiotics (Basel) 10(4):450

    Article  CAS  PubMed  Google Scholar 

  31. Fagerlund A et al (2016) Biofilm matrix composition affects the susceptibility of food associated Staphylococci to cleaning and disinfection agents. Front Microbiol 7:856

    Article  PubMed  PubMed Central  Google Scholar 

  32. Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53(1):158–163

    Article  CAS  PubMed  Google Scholar 

  33. Wang X et al (2022) Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem Pharmacol 199:114982

    Article  CAS  PubMed  Google Scholar 

  34. Wu CL et al (2021) Boosting synergistic effects of short antimicrobial peptides with conventional antibiotics against resistant bacteria. Front Microbiol 12:747760

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tanchuk VY et al (2016) A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock Vina. Chem Biol Drug Des 87(4):618–625

    Article  CAS  PubMed  Google Scholar 

  36. Tao Y et al (2022) Bavachin suppresses alpha-hemolysin expression and protects mice from pneumonia infection by Staphylococcus aureus. J Microbiol Biotechnol 32(10):1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schneewind O, Fowler A, Faull KF (1995) Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268(5207):103–106

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J et al (2014) Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci USA 111(37):13517–13522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pani A et al (2022) Erdosteine enhances antibiotic activity against bacteria within biofilm. Int J Antimicrob Agents 59(3):106529

    Article  CAS  PubMed  Google Scholar 

  40. Kong W et al (2015) Sandwich fluorimetric method for specific detection of Staphylococcus aureus based on antibiotic-affinity strategy. Anal Chem 87(19):9864–9868

    Article  CAS  PubMed  Google Scholar 

  41. Boero E et al (2022) Natural human immunity against staphylococcal protein A relies on effector functions triggered by IgG3. Front Immunol 13:834711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liew CK et al (2004) Localization and mutagenesis of the sorting signal binding site on sortase A from Staphylococcus aureus. FEBS Lett 571(1–3):221–226

    Article  CAS  PubMed  Google Scholar 

  43. Liu C et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18-55

    Article  PubMed  Google Scholar 

  44. Klevens RM, Edwards JR, Gaynes RP (2008) The impact of antimicrobial-resistant, health care-associated infections on mortality in the United States. Clin Infect Dis 47(7):927–930

    Article  PubMed  Google Scholar 

  45. Ahmad-Mansour N et al (2021) Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins (Basel) 13(10):677

    Article  CAS  PubMed  Google Scholar 

  46. Rossi F et al (2014) Transferable vancomycin resistance in a community-associated MRSA lineage. N Engl J Med 370(16):1524–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen CJ, Huang YC (2014) New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol Infect 20(7):605–623

    Article  CAS  PubMed  Google Scholar 

  48. Lee AS et al (2018) Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 4:18033

    Article  PubMed  Google Scholar 

  49. Wu SC et al (2019) Natural products that target virulence factors in antibiotic-resistant Staphylococcus aureus. J Agric Food Chem 67(48):13195–13211

    Article  CAS  PubMed  Google Scholar 

  50. Kali A (2015) Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus aureus: a brief review. Pharmacogn Rev 9(17):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Majerczyk CD et al (2008) Staphylococcus aureus CodY negatively regulates virulence gene expression. J Bacteriol 190(7):2257–2265

    Article  CAS  PubMed  Google Scholar 

  52. Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 17:32–37

    Article  CAS  PubMed  Google Scholar 

  53. Navarre WW, Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol Microbiol 14(1):115–121

    Article  CAS  PubMed  Google Scholar 

  54. Gao C et al (2016) Exploration of multiple sortase A protein conformations in virtual screening. Sci Rep 6(1):1–14

    Google Scholar 

  55. Sugimoto S et al (2018) Broad impact of extracellular DNA on biofilm formation by clinically isolated methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep 8(1):2254

    Article  PubMed  PubMed Central  Google Scholar 

  56. O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270(2):179–188

    Article  CAS  PubMed  Google Scholar 

  57. Zong Y et al (2004) Crystal structures of Staphylococcus aureus sortase A and its substrate complex. J Biol Chem 279(30):31383–31389

    Article  CAS  PubMed  Google Scholar 

  58. Frankel BA et al (2007) Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA. Biochemistry 46(24):7269–7278

    Article  CAS  PubMed  Google Scholar 

  59. Bentley ML, Lamb EC, McCafferty DG (2008) Mutagenesis studies of substrate recognition and catalysis in the sortase A transpeptidase from Staphylococcus aureus. J Biol Chem 283(21):14762–14771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Song W et al (2022) Hibifolin, a natural sortase A inhibitor, attenuates the pathogenicity of Staphylococcus aureus and enhances the antibacterial activity of cefotaxime. Microbiol Spectr 10(4):e0095022

    Article  PubMed  Google Scholar 

  61. Tian L et al (2022) Isovitexin protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting sortase A. J Microbiol Biotechnol 32(10):1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang L et al (2015) The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front Microbiol 6:1031

    Article  PubMed  PubMed Central  Google Scholar 

  63. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

    Article  CAS  PubMed  Google Scholar 

  64. Capuzzi SJ, Muratov EN, Tropsha A (2017) Phantom PAINS: problems with the utility of alerts for Pan-Assay INterference compoundS. J Chem Inf Model 57(3):417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim TO, Despotovic J, Lambert MP (2018) Eltrombopag for use in children with immune thrombocytopenia. Blood Adv 2(4):454–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Su X et al (2022) Cyanidin chloride protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting Sortase A. Virulence 13(1):1434–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partly supported by a grant from the Science and Technology Development Plan Project (2019) of the Jilin Province Science and Technology Department (20190103080JH), “Xinglin Scholar Project” of Changchun University of Chinese Medicine (2019) and “Thirteenth Five-Year Plan” of Science and Technology Project of Education Department of Jilin Province (No. JJKH20200906KJ).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by TJ, DY, RW and CZ; the first draft of the manuscript was written by TJ; BW, YX and YL revised the manuscript; XS and WS conceived and designed the experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wu Song, Xin Su or Bingmei Wang.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest to declare in relation to this work.

Ethical approval

The animal experiments and surgical procedures were approved by the Experimental Animal Ethics Committee of Changchun University of Chinese Medicine, in accordance with guidelines.

Consent to participate

Informed consent forms were obtained from all participants.

Additional information

Edited by: Volkhard A.J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2602 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Yuan, D., Wang, R. et al. Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia. Med Microbiol Immunol 212, 421–435 (2023). https://doi.org/10.1007/s00430-023-00782-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-023-00782-9

Keywords

Navigation