Skip to main content
Log in

Effect of Magnetite Content and Specificity of Nickel(II) Ions on Electrokinetic Properties of Composites Based on Porous Silica Particles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Powders of magnetite and its composites have been obtained on the basis of macroporous high-silica glass particles containing different amounts of Fe3O4. XRD, XPS, and Raman spectroscopy have been employed to confirm the formation of a magnetite phase in all iron-containing samples. The surface morphology and elemental composition of porous composite particles have been studied by SEM and EDX methods. It has been found that the external surface of porous silica particles is modified to different extents. It has been shown that the position of the isoelectric point (IEP) and the values of the zeta-potentials for the composites coincide in indifferent electrolyte solutions. Two isoelectric points are observed in the pH dependences of the zeta-potential for the composite particles in nickel chloride solutions. In dilute solutions containing specifically adsorbed nickel ions and at pH below pHIEP-2, the electrokinetic properties of the composite particles are primarily affected by magnetite phase content in a composite powder and, at rather high concentrations of Ni2+ ions, by their specificity with respect to oxide surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Feijoo, S., González-Rodríguez, J., Fernández, L., et al., Fenton and photo-Fenton nanocatalysts revisited from the perspective of life cycle assessment, Catalysts, 2020, vol. 10, no. 1, p. 23. https://doi.org/10.3390/catal10010023

    Article  CAS  Google Scholar 

  2. Shariatinia, Z. and Esmaeilzadeh, A., Hybrid silica aerogel nanocomposite adsorbents designed for Cd(II) removal from aqueous solution, Water Environ. Res., 2019, vol. 91, no. 12, p. 1624. https://doi.org/10.1002/wer.1162

    Article  CAS  PubMed  Google Scholar 

  3. Kondrashova, N.B., Shamsutdinov, A.S., Batueva, T.D., et al., Preparation and properties of iron oxide doped mesoporous silica systems, J. Inorg. Organomet. Polym. Mater., 2020, vol. 30, p. 2081. https://doi.org/10.1007/s10904-019-01370-2

    Article  CAS  Google Scholar 

  4. Viter, R., Geveluk, S., Smyntyna, V., and Doycho, I., Optical properties of nanoporous glass filled with with TiO2 nanostructures, Opt. Appl., 2012, vol. XLII, no. 2, p. 307. https://doi.org/10.5277/oa120208

    Article  CAS  Google Scholar 

  5. Zapotoczny, B., Dudek, M.R., Guskos, N., et al., Fmr study of the porous silicate glasses with Fe3O4 magnetic nanoparticles fillers, J. Nanomater., 2012, vol. 2012, p. 8. https://doi.org/10.1155/2012/341073

    Article  CAS  Google Scholar 

  6. Burak Ertuş,E., Vakifahmetoglu, C., and Öztürk, A., Enhanced methylene blue removal efficiency of TiO2 embedded porous glass, J. Eur. Ceram. Soc., 2021, vol. 41, no. 2, p. 1530. https://doi.org/10.1016/j.jeurceramsoc.2020.09.047

    Article  CAS  Google Scholar 

  7. Mazurin, O.V., Roskova, G.P., Aver’yanov, V.I., and Antropova, T.V., Dvukhfaznye stekla: struktura, svoistva, primenenie (Two-Phase Glasses: Structure, Properties, Application), Leningrad: Nauka. 1991.

  8. Enke, D., Janowski, F., and Schwieger, W., Porous glasses in the 21st century—a short review, Microporous Mesoporous Mater., 2003, vol. 60, nos, 1–3, p. 19. https://doi.org/10.1016/S1387-1811(03)00329-9

    Article  CAS  Google Scholar 

  9. Inayat, A., Reinhardt, B., Herwig, J., et al., Recent advances in the synthesis of hierarchically porous silica materials on the basis of porous glasses, New Journal of Chemistry, 2016, vol. 40, no. 5, p. 4095. https://doi.org/10.1039/C5NJ03591K

    Article  CAS  Google Scholar 

  10. Konate, A., He, X., Zhang, Z., et al., Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling, Sustainability, 2017, vol. 9, no. 5, p. 790. https://doi.org/10.3390/su9050790

    Article  CAS  Google Scholar 

  11. Makarchuk, O.V., Dontsova, T.A., and Astrelin, I.M., Magnetic nanocomposites as efficient sorption materials for removing dyes from aqueous solutions, Nanoscale Res. Lett., 2016, vol. 11, p. 161. https://doi.org/10.1186/s11671-016-1364-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nidheesh, P.V., Heterogeneous fenton catalysts for the abatement of organic pollutants from aqueous solution: A review, RSC Adv., 2015, vol. 5, p. 40552. https://doi.org/10.1039/C5RA02023A

    Article  CAS  Google Scholar 

  13. Rehman, A., Daud, A., Warsi, M.F., et al., Nanostructured maghemite and magnetite and their nanocomposites with graphene oxide for photocatalytic degradation of methylene blue, Mater. Chem. Phys., 2020, vol. 256, p. 123752. https://doi.org/10.1016/j.matchemphys.2020.123752

    Article  CAS  Google Scholar 

  14. Arsalani, S., Guidelli, E.J., Silveira, M.A., et al., Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent, J. Magn. Magn. Mater., 2019, vol. 475, p. 458. https://doi.org/10.1016/j.jmmm.2018.11.132

    Article  CAS  Google Scholar 

  15. Tolmacheva, V.V., Apyari, V.V., Kochuk, E.V., and Dmitrienko, S.G., Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds, J. Anal. Chem., 2016, vol. 71, no. 4, p. 321. https://doi.org/10.1134/S1061934816040079

    Article  CAS  Google Scholar 

  16. Pershina, A.G., Sazonov, A.E., and Mil’to, I.V., Application of magnetic nanoparticles in biomedicine, Byulleten’ Sibirskoi Meditsiny, 2008, no. 2, p. 70.

  17. Zhao, D.L., Zhang, H.L., Zeng, X.W., et al., Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia, Biomed. Mater., 2006, vol. 1, no. 4, p. 198. https://doi.org/10.1088/1748-6041/1/4/004

    Article  CAS  PubMed  Google Scholar 

  18. Yiu, H.H.P., Keane, M.A., Lethbridge, Z.A.D., et al., Synthesis of novel magnetic iron metal-silica (Fe-SBA‑15) and magnetite-silica (Fe3O4-SBA-15) nanocomposites with a high iron content using temperature-programed reduction, Nanotecnology, 2008, vol. 19, no. 25, p. 255606. https://doi.org/10.1088/0957-4484/19/25/255606

    Article  CAS  Google Scholar 

  19. Juang, R.-S., Chien, C.-C., Yao, C.-L., et al., Preparation of magnetically recoverable mesoporous silica nanocomposites for effective adsorption of urea in simulated serum, J. Taiwan Inst. Chem. Eng., 2018, vol. 91, p. 22. https://doi.org/10.1016/j.jtice.2018.05.022

    Article  CAS  Google Scholar 

  20. Kim, J.H., Cha, B.J., Kim, Y.D., and Seo, H.O., Kinetics and thermodynamics of methylene blue adsorption on the Fe-oxide nanoparticles embedded in the mesoporous SiO2, Adv. Powder Technol., 2020, vol. 31, no. 2, p. 816. https://doi.org/10.1016/j.apt.2019.11.036

    Article  CAS  Google Scholar 

  21. Hong, Y., Cha, B.J., Kim, Y.D., and Seo, H.O., Mesoporous SiO2 particles combined with Fe oxide nanoparticles as a regenerative methylene blue adsorbent, ACS Omega, 2019, vol. 4, no. 6, p. 9745. https://doi.org/10.1021/acsomega.9b00726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mazilu, I., Ciotonea, C., Chirieac, A., et al., Synthesis of highly dispersed iron species within mesoporous (A1-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts, Microporous Mesoporous Mater., 2017, vol. 241, p. 326. https://doi.org/10.1016/j.micromeso.2016.12.024

    Article  CAS  Google Scholar 

  23. Tao, C. and Zhu, Y., Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia, Dalton Trans., 2014, vol. 43, no. 41, p. 15482. https://doi.org/10.1039/c4dt01984a

    Article  CAS  PubMed  Google Scholar 

  24. El-Boubbou, K., Ali, R., Al-Zahrani, H., et al., Preparation of iron oxide mesoporous magnetic microparticles as novel multidrug carriers for synergistic anticancer therapy and deep tumor penetration, Sci. Rep., 2019, vol. 9, p. 9481. https://doi.org/10.1038/s41598-019-46007-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, H., Ji, Y., Qiao, Z., et al., Preparation, characterization, and application of magnetic Fe-SBA-15 mesoporous silica molecular sieves, J. Autom. Methods Manage. Chem., 2010, vol. 2010, p. 323509. https://doi.org/10.1155/2010/323509

    Article  CAS  Google Scholar 

  26. Stovpiaga, E.Y., Eurov, D.A., Kurdyukov, D.A., et al., The synthesis of clusters of iron oxides in mesopores of monodisperse spherical silica particles, Phys. Solid State, 2017, vol. 59, no. 8, p. 1623. https://doi.org/10.1134/S1063783417080273

    Article  CAS  Google Scholar 

  27. Surowieca, Z., Wiertel, M., Budzynski, M., et al., Magnetite nanowires in MCM-41 type mesoporous silica templates, J. Non-Cryst. Solids, 2008, vol. 354, p. 4271. https://doi.org/10.1016/j.jnoncrysol.2008.06.032

    Article  CAS  Google Scholar 

  28. Napolsky, K., Eliseev, A., and Knotko, A., Preparation of ordered magnetic iron nanowires in the mesoporous silica matrix, Mater. Sci. Eng., C, vol. 23, p. 151. https://doi.org/10.1016/S0928-4931(02)00252-7

  29. Cuello, N.I., Oliva, M.I., Rodriguez, Torres C.E., et al., Study on magnetite nanoparticles embedded in mesoporous silica obtained by a straightforward and biocompatible method, J. Phys. Chem. Solids, 2020, vol. 145, p. 109535. https://doi.org/10.1016/j.jpcs.2020.109535

    Article  CAS  Google Scholar 

  30. Karsakova, Yu.V. and Tikhomirova, T.I., Magnetic adsorbent based on chemically modified silica: Preparation and properties. Sorbtsionnye Khromatogr. Protsessy, 2018, vol. 18, no. 6, p. 846. https://doi.org/10.17308/sorpchrom.2018.18/612

    Article  CAS  Google Scholar 

  31. Munasir, Setyaningsih, N., Yanasin, S., et al., Phase and magnetic properties of Fe3O4/SiO2 natural materials-based using polyethylene glycol media, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 515, no. 1, p. 012017. https://doi.org/10.1088/1757-899X/515/1/012017

  32. Bogachev, K.G., Gareev, L.B., Matyushkin L.B., et al., Study of magnetite nanoparticle suspensionsby photometry and NMR relaxometry, Physics of the Solid State, 2013, vol. 55, no. 12, p. 2431. https://doi.org/10.1134/S106378341312007X

    Article  CAS  Google Scholar 

  33. Elmi, Ch., Brigatti, M.F., Guggenheim, S., et al., Crystal chemistry and surface configurations of two polylithionite-1M crystals, American Mineralogist, 2014, vol. 99, no. 10, p. 2049. https://doi.org/10.2138/am-2014-4908

    Article  Google Scholar 

  34. Zhu, Y., Yue, M., Natarajan, V., et al., Efficient activation of persulfate by Fe3O4@β-cyclodextrin nanocomposite for removal of bisphenol A, RSC Adv., 2018, vol. 8, p. 14879. https://doi.org/10.1039/C8RA01696H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chi, Y., Yuan, Q., Li, Y., et al., Synthesis of Fe3O4@SiO2−Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol, J. Colloid Interface Sci., 2012, vol. 383, no. 1, p. 96. https://doi.org/10.1016/j.jcis.2012.06.027

    Article  CAS  PubMed  Google Scholar 

  36. Choi, Y., Kim, T., Lee, H., et al., Bottom-up plasma-enhanced atomic layer deposition of SiO2 by utilizing growth inhibition using NH3 plasma pre-treatment for seamless gap-fill process, Sci. Rep., 2022, vol. 12, p. 15756. https://doi.org/10.1038/s41598-022-20201-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shebanova, O.N. and Lazor, P., Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum, J. Solid State Chem., 2003, vol. 174, no. 2, p. 424. https://doi.org/10.1016/S0022-4596(03)00294-9

    Article  CAS  Google Scholar 

  38. Slavov, L., Abrashev, M.V., Merodiisk, T., et al., Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids, J. Magn. Magn. Mater., 2010, vol. 322, no. 14, p. 1904. https://doi.org/10.1016/j.jmmm.2010.01.005

    Article  CAS  Google Scholar 

  39. Testa-Anta, M., Ramos-Docampo, M.A., Comesana-Hermo, M.A., et al., Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for biorelated applications, Nanoscale Adv., 2019, vol. 1, p. 2086. https://doi.org/10.1039/C9NA00064J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ermakova, L.E., Kuznetsova, A.S., Volkova, A.V., and Antropova, T.V., Structural and electrokinetic characteristics of high-silica porous glasses in nickel chloride solutions, Colloid J., 2021, vol. 83, no. 4, p. 418. https://doi.org/10.1134/S1061933X18030043

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.A. Aleksandrov for the measurements of the specific surface area. The study was carried out using the equipment of the Interdisciplinary Resource Centre for Nanotechnology, the Centre for Optical and Laser Materials Research, the Centre for Physical Methods of Surface Investigation, the Centre for X-ray Diffraction Studies at the Research Park of St. Petersburg State University.

Funding

This work was supported by St. Petersburg State University (project no. 94031307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Volkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

In commemoration of the 300th anniversary of St Petersburg State University’s founding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, A.V., Lopatina, E.S., Solovyeva, E.V. et al. Effect of Magnetite Content and Specificity of Nickel(II) Ions on Electrokinetic Properties of Composites Based on Porous Silica Particles. Colloid J 85, 486–499 (2023). https://doi.org/10.1134/S1061933X23600446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600446

Navigation