Skip to main content
Log in

Interaction of Platinum Nanoparticles Synthesized on Graphite with Nitrous Oxide

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Heterogeneous catalytic reactions involving nitrous oxide (N2O) are of great interest for medicine, technology, and ecology. The goal of this work is to determine the features of adsorption of N2O molecules followed by their interaction with a catalytic system based on metal nanoparticles at room temperature. Scanning tunneling microscopy and spectroscopy, as well as Auger spectroscopy, have been employed to identify the results and products of the adsorption of nitrous oxide on the surface of individual Pt nanoparticles synthesized on highly oriented pyrolytic graphite. It has been shown that, at short exposures, oxygen atoms resulting from dissociative adsorption oxidize the surface of nanoparticles only near the platinum–graphite interface. As the exposure increases, the entire surface of the nanoparticles is covered with oxide. Thus, it has been shown that the adsorption properties of the surface of the platinum nanoparticles on graphite are not the same, and this fact provides the possibility to carry out different chemical reactions on different surface regions, thereby increasing the efficiency of the catalytic system as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Knuf, K. and Maani, C.V., Nitrous Oxide, Treasure Island (FL): StatPearls Publishing, 2022. www.ncbi. nlm.nih.gov/books/NBK532922.

  2. Murray, M.J. and Murray, W.J., Nitrous oxide availability, J. Clin. Pharmacol., 1980, vol. 20, no. 4, p. 202. https://doi.org/10.1002/j.1552-4604.1980.tb01697.x

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Z.-C., Yan, Y., Fang, Z., Nisar, T., Sun, L., Guo, Y., Xia, N., Wang, H., and Chen, D.-W., Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets, Food Control, 2019, vol. 98, p. 209. https://doi.org/10.1016/j.foodcont.2018.11.043

    Article  CAS  Google Scholar 

  4. Zakirov, V., Sweeting, M., Lawrence, T., and Sellers, J., Nitrous oxide as a rocket propellant, Acta Astronaut., 2001, vol. 48, nos. 5–12, p. 353. https://doi.org/10.1016/S0094-5765(01)00047-9

  5. Muller, R., The impact of the rise in atmospheric nitrous oxide on stratospheric ozone, AMBIO, 2021, vol. 50, no. 1, p. 35. https://doi.org/10.1007/s13280-020-01428-3

    Article  CAS  PubMed  Google Scholar 

  6. Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J.A., Heterogeneous catalytic decomposition of nitrous oxide, Applied Catalysis B: Environmental, 1996, vol. 9, nos. 1–4, p. 25. https://doi.org/10.1016/0926-3373(96)90072-7

    Article  CAS  Google Scholar 

  7. Centi, G., Perathoner, S., Vazzana, F., Marella, M., Tomaselli, M., and Mantegazza, M., Novel catalysts and catalytic technologies for N2O removal from industrial emissions containing O2, H2O and SO2, Adv. Environ. Res., 2000, vol. 4, no. 4, p. 325. https://doi.org/10.1016/S1093-0191(00)00032-0

    Article  Google Scholar 

  8. Santiago, M., Hevia, M.A.G., and Pérez-Ramírez, J., Evaluation of catalysts for N2O abatement in fluidized-bed combustion, Appl. Catal., B, 2009, vol. 90, nos. 1–2, p. 83. https://doi.org/10.1016/j.apcatb.2009.02.017

    Article  CAS  Google Scholar 

  9. Li, Yu. and Armor, J.N., Catalytic decomposition of nitrous oxide on metal exchanged zeolites, Appl. Catal., B, 1992, vol. 1, no. 3, p. L21. https://doi.org/10.1016/0926-3373(92)80019-V

    Article  CAS  Google Scholar 

  10. Centi, G., Galli, A., Montanari, B., Perathoner, S., and Vaccaria, A., Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites. Role of some variables on reactivity, Catal. Today, 1997, vol. 35, nos. 1–2, p. 113. https://doi.org/10.1016/S0920-5861(96)00137-X

    Article  CAS  Google Scholar 

  11. Liu, Z., Amiridis, M.D., and Chen, Y., Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2, The Journal of Physical Chemistry B, vol. 109, no. 3, p. 1251. https://doi.org/10.1021/jp046368q

  12. Xu, X., Xu, H., Kapteijn, F., and Moulijn, J.A., SBA‑15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants, Appl. Catal., B, 2004, vol. 53, no. 4, p. 265. https://doi.org/10.1016/j.apcatb.2004.04.023

    Article  CAS  Google Scholar 

  13. Smeets, P.J., Sels, B.F., van Teeffelen, R.M., Leeman, H., Hensen, E.J.M., and Schoonheydt, R.A., The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, no and H2O on recombination of oxygen, J. Catal., 2008, vol. 256, no. 2, p. 183. https://doi.org/10.1016/j.jcat.2008.03.008

    Article  CAS  Google Scholar 

  14. Kim, M.H., Ebner, J.R., Friedman, R.M., and Vannice, M.A., Dissociative N2O adsorption on supported Pt, J. Catal., 2001, vol. 204, p. 348. https://doi.org/10.1006/jcat.2001.341

    Article  CAS  Google Scholar 

  15. Habraken, F.H.P.M., Kieffer, E.P., and Boots-ma, G.A., A study of the kinetics of the interactions of O2 and N2O with a Cu(111) surface and of the reaction of CO with adsorbed oxygen using AES, LEED and ellipsometry, Surf. Sci., 1979, vol. 83, no. 1, p. 45. https://doi.org/10.1016/0039-6028(79)90479-5

    Article  CAS  Google Scholar 

  16. Avery, N.R., An EELS study of N2O adsorption on Pt(111), Surf. Sci., 1983, vol. 131, nos. 2–3, p. 501. https://doi.org/10.1016/0039-6028(83)90294-7

    Article  CAS  Google Scholar 

  17. Kim, M.H. and Kim, D.H., Low-temperature reduction of N2O by H2 over Pt/SiO2 catalysts, Journal of Environmental Science International, 2013, vol. 22, no. 1, p. 73. https://doi.org/10.5322/JES.2013.22.1.73

    Article  CAS  Google Scholar 

  18. Guntherodt, H.-J. and Wiesendanger, R., Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate-Covered Surfaces, Berlin: Springer, 1992. https://doi.org/10.1007/978-3-642-97343-7

  19. Jin, Z., Xi, C., Zeng, Q., Yin, F., Zhao, J., and Xue, J., Catalytic behavior of nanoparticle α-PtO2 for ethanol oxidation, J. Mol. Catal. A: Chem., 2003, vol. 191, no. 1, p. 61. https://doi.org/10.1016/S1381-1169(02)00029-8

    Article  CAS  Google Scholar 

  20. Canart-Martin, M.C., Delrue, J.P., Laude, L.D., and Wautelet, M., Electronic structure and reduction processes in PtOx films, Chem. Phys., 1980, vol. 48, no. 2, p. 283. https://doi.org/10.1016/0301-0104(80)80058-9

    Article  CAS  Google Scholar 

  21. Neff, H., Henkel, S., Hartmannsgruber, E., Steinbeiss, E., Michalke, W., Steenbeck, K., and Schmidt, H., Structural, optical, and electronic properties of magnetronsputtered platinum oxide films, J. Appl. Phys., 1996, vol. 79, no. 10, p. 7672. https://doi.org/10.1063/1.362341

    Article  CAS  Google Scholar 

  22. Uddin, J., Peralta, J.E., and Scuseria, G.E., Density functional theory study of bulk platinum monoxide, Phys. Rev. B, 2005, vol. 71, no. 15, p. 155112. https://doi.org/10.1103/PhysRevB.71.155112

  23. Kaewmaraya, T., Ramzan, M., Sun, W., Sagynbaeva, M., and Ahuja, R., Atomistic study of promising catalyst and electrode material for memory capacitors: Platinum oxides, Comput. Mater. Sci., 2013, vol. 79, p. 804. https://doi.org/10.1016/j.commatsci.2013.07.021

    Article  CAS  Google Scholar 

  24. Gatin, A.K., Grishin, M.V., Dokhlikova, N.V., Sarvadii, S.Yu., and Shub, B.R., Hydrogenation of HOPG-supported gold nanoparticles: Features of initial stages, Crystals, 2019, vol. 9, no. 7, p. 350. https://doi.org/10.3390/cryst9070350

    Article  CAS  Google Scholar 

  25. Gatin, A.K., Sarvadii, S.Y., Dokhlikova, N.V., Kharitonov, V.A., Ozerin, S.A., Shub, B.R., and Grishin, M.V., Oxidation of supported nickel nanoparticles at low exposure to O2: Charging effects and selective surface activity, Nanomaterials, 2022, vol. 12, no. 7, p. 1038. https://doi.org/10.3390/nano12071038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gatin, A.K., Dokhlikova, N.V., Mukhutdinova, R.G., Ozerin, S.A., and Grishin, M.V., Specific features of the interaction of oxidized platinum nanoparticles with molecular hydrogen and carbon monoxide, Colloid J., 2022, vol. 84, no. 6, p. 672. https://doi.org/10.1134/S1061933X22600233

    Article  CAS  Google Scholar 

  27. Dubkov, K.A., Panov, G.I., and Parmon, V.N., Nitrous oxide as a selective oxidant for ketonization of C=C double bonds in organic compounds, Russ. Chem. Rev., 2017, vol. 86, no. 6, p. 510. https://doi.org/10.1070/RCR4697

    Article  CAS  Google Scholar 

  28. Haynes, W.M., CRC Handbook of Chemistry and Physics, CRC Press: Boca Raton, FL, USA, 2016, 97th ed.

    Book  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 21-73-20010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Grishin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Khozina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baimukhambetova, D., Gatin, A.K., Ozerin, S.A. et al. Interaction of Platinum Nanoparticles Synthesized on Graphite with Nitrous Oxide. Colloid J 85, 479–485 (2023). https://doi.org/10.1134/S1061933X23600392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600392

Navigation