Skip to main content
Log in

The SGLT2 inhibitor empagliflozin attenuates atherosclerosis progression by inducing autophagy

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular disease due to atherosclerosis is one of the leading causes of death worldwide; however, the underlying mechanism has yet to be defined. The sodium-dependent glucose transporter 2 inhibitor (SGLT2i) empagliflozin is a new type of hypoglycemic drug. Recent studies have shown that empagliflozin not only reduces high glucose levels but also exerts cardiovascular-protective effects and slows the process of atherosclerosis. The purpose of this study was to elucidate the mechanism by which empagliflozin ameliorates atherosclerosis. Male apolipoprotein E-deficient (ApoE−/−) mice were fed a high-fat Western diet to establish an atherosclerosis model. The area and size of atherosclerotic lesions in ApoE−/− mice were then assessed by performing hematoxylin–eosin (HE) staining after empagliflozin treatment. Concurrently, oxidized low-density lipoprotein (oxLDL) was used to mimic atherosclerosis in three different types of cells. Then, following empagliflozin treatment of macrophage cells (RAW264.7), human aortic smooth muscle cells (HASMCs), and human umbilical vein endothelial cells (HUVECs), western blotting was applied to measure the levels of autophagy-related proteins and proinflammatory cytokines, and green fluorescent protein (GFP)-light chain 3 (LC3) puncta were detected using confocal microscopy to confirm autophagosome formation. Oil Red O staining was performed to detect the foaming of macrophages and HASMCs, and flow cytometry was used for the cell cycle analysis. 5-ethynyl-2′-deoxyuridine (EdU), cell counting kit-8 (CCK-8), and scratch assays were also performed to examine the proliferation and migration of HASMCs. Empagliflozin suppressed the progression of atherosclerotic lesions in ApoE−/− mice. Empagliflozin also induced autophagy in RAW246.7 cells, HASMCs, and HUVECs via the adenosine monophosphate–activated protein kinase (AMPK) signaling pathway, and it significantly increased the levels of the Beclin1 protein, the LC3B-II/I ratio, and p-AMPK protein. In addition, empagliflozin decreased the expression of P62 and the protein levels of inflammatory cytokines, and it inhibited the foaming of RAW246.7 cells and HASMCs, as well as the expression of inflammatory factors by inducing autophagy. Empagliflozin activated autophagy through the AMPK signaling pathway to delay the progression of atherosclerosis. Furthermore, the results of flow cytometry, EdU assays, CCK-8 cell viability assays, and scratch assays indicated that empagliflozin blocked HASMCs proliferation and migration. Empagliflozin activates autophagy through the AMPK signaling pathway to delay the evolution of atherosclerosis, indicating that it may represent a new and effective drug for the clinical treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and materials involved in this work are available.

Abbreviations

AS :

Atherosclerosis

EMPA :

Empagliflozin

SGLT2i :

Sodium-dependent glucose transporter 2 inhibitor

HUVECs :

Human umbilical vein endothelial cells

HUSMCs :

Human aortic smooth muscle cells

RAW 264.7 :

A mouse macrophage line

GFP-LC3 :

Green fluorescent protein-light chain 3

oxLDL :

Human oxidized low-density lipoprotein

AMPK :

Adenosine monophosphate-activated protein kinase

T2DM :

Type 2 diabetes mellitus

TNF-α :

Tumor necrosis factor-α

IL-6 :

Interleukin-6

mTORC1 :

Mammalian target of rapamycin complex 1

ASCVD :

Atherosclerotic cardiovascular disease

References

  1. Alloza I, Goikuria H, Freijo MDM, Vandenbroeck K (2016) A role for autophagy in carotid atherosclerosis. Eur Stroke J 1(4):255–263. https://doi.org/10.1177/2396987316674085

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arnott C, Li Q, Kang A, Neuen BL, Bompoint S, Lam CSP, Rodgers A, Mahaffey KW, Cannon CP, Perkovic V, Jardine MJ, Neal B (2020) Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc 9(3):e014908. https://doi.org/10.1161/jaha.119.014908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aviram M (2011) Atherosclerosis: cell biology and lipoproteins–inflammation and oxidative stress in atherogenesis: protective role for paraoxonases. Curr Opin Lipidol 22(3):243–4. https://doi.org/10.1097/MOL.0b013e3283474beb

    Article  CAS  PubMed  Google Scholar 

  4. Behnammanesh G, Durante GL, Khanna YP, Peyton KJ, Durante W (2020) Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: role of heme oxygenase-1. Redox Biol 32:101527. https://doi.org/10.1016/j.redox.2020.101527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, Toan S, Muid D, Tan Y (2022) Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol 52:102288. https://doi.org/10.1016/j.redox.2022.102288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai J, Zhang M, Liu Y, Li H, Shang L, Xu T, Chen Z, Wang F, Qiao T, Li K (2020) Iron accumulation in macrophages promotes the formation of foam cells and development of atherosclerosis. Cell Biosci 10(1):137. https://doi.org/10.1186/s13578-020-00500-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Meyer GR, Grootaert MO, Michiels CF, Kurdi A, Schrijvers DM, Martinet W (2015) Autophagy in vascular disease. Circ Res 116(3):468–79. https://doi.org/10.1161/circresaha.116.303804

    Article  PubMed  Google Scholar 

  8. Di Pietro N, Formoso G, Pandolfi A (2016) Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vasc Pharmacol 84:1–7. https://doi.org/10.1016/j.vph.2016.05.013

    Article  CAS  Google Scholar 

  9. Fei Y, Tsoi MF, Cheung BMY (2019) Cardiovascular outcomes in trials of new antidiabetic drug classes: a network meta-analysis. Cardiovasc Diabetol 18(1):112. https://doi.org/10.1186/s12933-019-0916-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han JH, Oh TJ, Lee G, Maeng HJ, Lee DH, Kim KM, Choi SH, Jang HC, Lee HS, Park KS, Kim YB, Lim S (2017) The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE (-/-) mice fed a western diet. Diabetologia 60(2):364–376. https://doi.org/10.1007/s00125-016-4158-2

    Article  CAS  PubMed  Google Scholar 

  11. Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y (2021) Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell. https://doi.org/10.1007/s13238-020-00809-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kasikara C, Doran AC, Cai B, Tabas I (2018) The role of non-resolving inflammation in atherosclerosis. J Clin Investig 128(7):2713–2723. https://doi.org/10.1172/jci97950

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee H-H, Paudel KJ, Kim D-W (2015) Terminalia chebula fructus inhibits migration and proliferation of vascular smooth muscle cells and production of inflammatory mediators in RAW 2647. Evid Based Complement Alternat Med 2015:502182. https://doi.org/10.1155/2015/502182

    Article  PubMed  PubMed Central  Google Scholar 

  15. Levine MJ (2017) Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr Diabetes Rev 13(4):405–423. https://doi.org/10.2174/1573399812666160613113556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Wu M, Xu B, Kang L (2021) Empagliflozin alleviates atherosclerosis progression by inhibiting inflammation and sympathetic activity in a normoglycemic mouse model. J Inflamm Res 14:2277–2287. https://doi.org/10.2147/jir.S309427

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Xu J, Wu M, Xu B, Kang L (2021) Empagliflozin protects against atherosclerosis progression by modulating lipid profiles and sympathetic activity. Lipids Health Dis 20(1):5. https://doi.org/10.1186/s12944-021-01430-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu YH, Chang YP, Li T, Han F, Li CJ, Li XY, Xue M, Cheng Y, Meng ZY, Han Z, Sun B, Chen LM (2020) Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice. Int J Biol Sci 16(3):529–542. https://doi.org/10.7150/ijbs.33007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinet W, De Loof H, De Meyer GRY (2014) mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis 233(2):601–607. https://doi.org/10.1016/j.atherosclerosis.2014.01.040

    Article  CAS  PubMed  Google Scholar 

  20. Meng Z, Liu X, Li T, Fang T, Cheng Y, Han L, Sun B, Chen L (2021) The SGLT2 inhibitor empagliflozin negatively regulates IL-17/IL-23 axis-mediated inflammatory responses in T2DM with NAFLD via the AMPK/mTOR/autophagy pathway. Int Immunopharm 94:107492. https://doi.org/10.1016/j.intimp.2021.107492

    Article  CAS  Google Scholar 

  21. Menghini R, Casagrande V, Marino A, Marchetti V, Cardellini M, Stoehr R, Rizza S, Martelli E, Greco S, Mauriello A, Ippoliti A, Martelli F, Lauro R, Federici M (2014) MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 5(1):e1029. https://doi.org/10.1038/cddis.2013.556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mewton N, Thibault H, Roubille F, Lairez O, Rioufol G, Sportouch C, Sanchez I, Bergerot C, Cung TT, Finet G, Angoulvant D, Revel D, Bonnefoy-Cudraz E, Elbaz M, Piot C, Sahraoui I, Croisille P, Ovize M (2013) Postconditioning attenuates no-reflow in STEMI patients. Basic Res Cardiol 108(6):383. https://doi.org/10.1007/s00395-013-0383-8

    Article  PubMed  Google Scholar 

  23. Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, Chatzigeorgiou A, Kalotychou V, Randeva MS, Chatha K, Kontzoglou K, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E (2021) Empagliflozin attenuates non-alcoholic fatty liver disease (NAFLD) in high fat diet fed ApoE((-/-)) mice by activating autophagy and reducing ER stress and apoptosis. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020818

  24. Okamoto A, Yokokawa H, Sanada H, Naito T (2016) Changes in levels of biomarkers associated with adipocyte function and insulin and glucagon kinetics during treatment with dapagliflozin among obese type 2 diabetes mellitus patients. Drugs R D 16(3):255–261. https://doi.org/10.1007/s40268-016-0137-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Packer M (2020) SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care 43(3):508–511. https://doi.org/10.2337/dci19-0074

    Article  CAS  PubMed  Google Scholar 

  26. Parahuleva MS, Lipps C, Parviz B, Hölschermann H, Schieffer B, Schulz R, Euler G (2018) MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Sci Rep 8(1):7823. https://doi.org/10.1038/s41598-018-25690-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peyton KJ, Yu Y, Yates B, Shebib AR, Liu XM, Wang H, Durante W (2011) Compound C inhibits vascular smooth muscle cell proliferation and migration in an AMP-activated protein kinase-independent fashion. J Pharmacol Exp Ther 338(2):476–84. https://doi.org/10.1124/jpet.111.181784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren C, Sun K, Zhang Y, Hu Y, Hu B, Zhao J, He Z, Ding R, Wang W, Liang C (2021) Sodium-Glucose cotransporter-2 inhibitor empagliflozin ameliorates sunitinib-induced cardiac dysfunction via regulation of AMPK-mTOR signaling pathway-mediated autophagy. Front Pharmacol 12:664181. https://doi.org/10.3389/fphar.2021.664181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scannapieco FA, Bush RB, Paju S (2003) Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke. A systematic review. Ann Periodontol 8(1):38–53. https://doi.org/10.1902/annals.2003.8.1.38

    Article  PubMed  Google Scholar 

  30. Schrijvers DM, De Meyer GR, Martinet W (2011) Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol 31(12):2787–91. https://doi.org/10.1161/atvbaha.111.224899

    Article  CAS  PubMed  Google Scholar 

  31. Shadab M, Millar MW, Slavin SA, Leonard A, Fazal F, Rahman A (2020) Autophagy protein ATG7 is a critical regulator of endothelial cell inflammation and permeability. Sci Rep 10(1):13708. https://doi.org/10.1038/s41598-020-70126-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao BZ, Han BZ, Zeng YX, Su DF, Liu C (2016) The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin 37(2):150–6. https://doi.org/10.1038/aps.2015.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soltani A, Salmaninejad A, Jalili-Nik M, Soleimani A, Javid H, Hashemy SI, Sahebkar A (2019) 5’-Adenosine monophosphate-activated protein kinase: a potential target for disease prevention by curcumin. J Cell Physiol 234(3):2241–2251. https://doi.org/10.1002/jcp.27192

    Article  CAS  PubMed  Google Scholar 

  34. Tian J, Popal MS, Liu Y, Gao R, Lyu S, Chen K, Liu Y (2019) Ginkgo biloba leaf extract attenuates atherosclerosis in streptozotocin-induced diabetic ApoE-/- mice by inhibiting endoplasmic reticulum stress via restoration of autophagy through the mTOR signaling pathway. Oxid Med Cell Longev 2019:8134678. https://doi.org/10.1155/2019/8134678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang R, Zhang Y, Xu L, Lin Y, Yang X, Bai L, Chen Y, Zhao S, Fan J, Cheng X, Liu E (2016) Protein inhibitor of activated STAT3 suppresses oxidized ldl-induced cell responses during atherosclerosis in apolipoprotein E-deficient Mice. Sci Rep 6:36790. https://doi.org/10.1038/srep36790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Archiv : Eur J Physiol 447(5):510–8. https://doi.org/10.1007/s00424-003-1063-6

    Article  CAS  Google Scholar 

  37. Wright EM (2001) Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 280(1):F10-8. https://doi.org/10.1152/ajprenal.2001.280.1.F10

    Article  CAS  PubMed  Google Scholar 

  38. Wu M, Yang S, Wang S, Cao Y, Zhao R, Li X, Xing Y, Liu L (2020) Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice. Front Pharmacol 11:223. https://doi.org/10.3389/fphar.2020.00223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu Z, Chen C, Luo J, Davis J, Zhang B, Tang L, Shi W, Liao D (2020) EGFP-EGF1-conjugated poly (lactic-co-glycolic acid) nanoparticles as a carrier for the delivery of CCR2- shRNA to atherosclerotic macrophage in vitro. Sci Rep 10(1):19636. https://doi.org/10.1038/s41598-020-76416-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu J, Hirai T, Koya D, Kitada M (2021) Effects of SGLT2 inhibitors on atherosclerosis: lessons from cardiovascular clinical outcomes in type 2 diabetic patients and basic researches. J Clin Med 11(1). https://doi.org/10.3390/jcm11010137

  41. Xu K, Yang Y, Yan M, Zhan J, Fu X, Zheng X (2010) Autophagy plays a protective role in free cholesterol overload-induced death of smooth muscle cells. J Lipid Res 51(9):2581–90. https://doi.org/10.1194/jlr.M005702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zelniker TA, Braunwald E (2018) Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol 72(15):1845–1855. https://doi.org/10.1016/j.jacc.2018.06.040

  43. Zhai C, Cheng J, Mujahid H, Wang H, Kong J, Yin Y, Li J, Zhang Y, Ji X, Chen W (2014) Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PloS One 9(3):e90563. https://doi.org/10.1371/journal.pone.0090563

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Wu Z, Yu H, Wang H, Liu G, Wang S, Ji X (2019) Chinese herbal medicine Wenxia Changfu formula reverses cell adhesion-mediated drug resistance via the integrin β1-PI3K-AKT pathway in lung cancer. J Cancer 10(2):293–304. https://doi.org/10.7150/jca.25163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Scientific and Technological Department of Hubei Province (NO.2022CFA036), the National Natural Science Foundation of China (NO. 81771522), Hubei Provincial Health Commission Project (NO. WJ2021M258) and Cultivating Project for Young Scholars at Hubei University of Medicine (No. 2020QDJZR026).

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all data were generated in-house and that no paper mill was used. The authors’ responsibilities were as follows: HLX performed the experiments, analyzed the data, prepared the figures and wrote the manuscript; JF, QT, QYS and YZC provided support for experimental techniques and analyzed the data; ZC and FYW conceived the study, designed the experiments and helped with data analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fuyun Wu or Zheng Cao.

Ethics declarations

Ethical approval and consent to participate

This experiment was approved by the Animal Management Committee of Hubei University of Medicine in accordance with the Animal Laboratory Animal Guidelines of Hubei University of Medicine and strictly abided by the rules of the Experimental Animal Ethics Committee of Hubei Medical College.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Empagliflozin reduces the area of atherosclerotic plaques in ApoE−/− mice.

• Empagliflozin induces autophagy in RAW246.7 cells, HASMCs and HUVECs.

• Empagliflozin may slow the progression of atherosclerosis by inducing autophagy.

• Empagliflozin may induce autophagy by activating the AMPK signaling pathway.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Fu, J., Tu, Q. et al. The SGLT2 inhibitor empagliflozin attenuates atherosclerosis progression by inducing autophagy. J Physiol Biochem 80, 27–39 (2024). https://doi.org/10.1007/s13105-023-00974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00974-0

Keywords

Navigation