Skip to main content
Log in

A mathematical programming approach for recognizing binet matrices

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The development of an efficient and practical method to recognize matrices originating from generalized graphs, in the same way that network matrices are defined over directed graphs, remains an open question. In this paper we present such a recognition procedure for binet matrices which are known to characterize an important class of integral polyhedra. A mathematical programming formulation for the recognition problem is provided, where the special structure of these matrices is expressed via a set of constraints. Finally, given that binet matrices represent certain classes of matroids, we present a set of areas ranging from combinatorial optimization to matroid theory that can benefit from our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abeledo, H.G., Rothblum, U.G.: Stable matchings and linear inequalities. Discrete Appl. Math. 54, 1–27 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appa, G., Kotnyek, B.: Rational and integral k-regular matrices. Discrete Math. 275, 1–15 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Appa, G., Kotnyek, B.: A bidirected generalization of network matrices. Networks 47, 185–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Appa, G., Kotnyek, B., Papalamprou, K., Pitsoulis, L.: Optimization with binet matrices. Oper. Res. Lett. 35, 345–352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of 49th Annual ACM SIGACT Symposium on the Theory of Computing, pp. 1206–1219 (2017)

  6. Artmann, S.: Optimization of bimodular integer programs and feasibility for three-modular base block IPs. Ph.D. Thesis, ETH Zurich (2020)

  7. Auslander, L., Trent, H.M.: Incidence matrices and linear graphs. J. Math. Mech. 8, 827–835 (1959)

    MathSciNet  MATH  Google Scholar 

  8. Balakrishnan, A., Li, G., Mirchandani, P.: Optimal network design with end-to-end service requirements. Oper. Res. 65(3), 729–750 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bixby, R.E., Cunningham, W.H.: Converting linear programs to network problems. Math. Oper. Res. 5, 321–357 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bixby, R.E., Wagner, D.K.: An almost linear-time algorithm for graph realization. Math. Oper. Res. 13(1), 99–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bolker, E.D., Zaslavsky, T.: A simple algorithm that proves half-integrality of bidirected network programming. Netw. Int. J. 48(1), 36–38 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Brettell, N., Oxley, J., Semple, C., Whittle, G.: The excluded minors for 2- and 3-regular matroids. arXiv:2206.15188v1 [math.CO] (2022)

  13. Camion, P.: Characterization of totally unimodular matrices. Proc. Am. Math. Soc. 16, 1068–1073 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, R.: The 9-connected excluded minors for the class of quasi-graphic matroids. SIAM J. Discrete Math. 36, 1627–1644 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cornuejols, G.: Combinatorial Optimization—Packing and Covering. Society for Industrial and Applied Mathematics (2001)

  16. Cecchetto, F., Traub, V., Zenklusen, R.: Bridging the gap between tree and connectivity augmentation: unified and stronger approaches. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pp. 370–383 (2021)

  17. DeVos, M., Funk, D., Pivotto, I.: On excluded minors of connectivity 2 for the class of frame matroids. Eur. J. Comb. 61, 167–196 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  19. Edmonds, J.: An Introduction to Matching. Mimeographic Notes of Engineering Summer Conference. University of Michigan, Ann Arbor (1967)

    Google Scholar 

  20. Fiorini, S., Groß, M., Könemann, J., Sanità, L.: Approximating weighted tree augmentation via Chvátal-Gomory cuts. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 817–831 (2018)

  21. Ford, L.R., Jr., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  22. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted graphs. In: Proceedings of the 21th International Colloquium on Automata Languages and Programming, pp. 487–498 (1994)

  23. Geelen, J., Gerards, B.: Characterizing graphic matroids by a system of linear equations. J. Combin. Theory Ser. B 103, 642–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gerards, A.M.H., Schrijver, A.: Matrices with the Edmonds–Johnson property. Combinatorica 6, 365–379 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hau, T.N., Hirai, H., Tsuchimura, N.: On half-integrality of network synthesis problem. J. Oper. Res. Soc. Jpn. 57(2), 63–73 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Karzanov, A.V.: Multiflows and disjoint paths of minimum total cost. Math. Program. 78(2), 219–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, L.S.-Y.: Recognizing signed-graphic matroids: Cylinder flips and the importance of column scaling. arXiv:1405.1313v3 [math.CO] (2014)

  28. Mayhew, D., Whittle, G., van Zwam, S.H.M.: An obstacle to a decomposition theorem for near-regular matroids. SIAM J. Discrete Math. 25, 271–279 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mighton, J.: A new characterization of graphic matroids. J. Combin. Theory Ser. B 98(6), 1253–1258 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Musitelli, A.: Recognizing binet matrices. Math. Program. 124, 349–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Musitelli, A.: Recognition of Generalised Network Matrices. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne (2007)

  32. Nemhauser, G.L., Wolsey, L.A.: Integer Programming and Combinatorial Optimization Wiley-Interscience (1999)

  33. Nutov, Z.: On the tree augmentation problem. Algorithmica 83, 553–575 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Combin. Theory (B) 31, 75–81 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  36. Parekh, O., Ravi, R., Zlatin, M.: On small-depth tree augmentations. Oper. Res. Lett. 50, 667–673 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Papalamprou, K., Pitsoulis, L.S., Vretta, E.-M.E.: Binary signed-graphic matroids: representations and recognition algorithms. Discrete Math. 343, 111887 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Papalamprou, K., Pitsoulis, L.S., Vretta, E.-M.E.: On characterizing the class of cographic signed-graphic matroids. Discrete Appl. Math. 296, 90–102 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Papalamprou, K., Pitsoulis, L.: Decomposition of binary signed-graphic matroids. SIAM J. Discrete Math. 27, 669–692 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sakarovitch, M.: Two commodity network flows and linear programming. Math. Program. 4(1), 1–20 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  42. Seymour, P.D.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305–359 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Seymour, P.D.: Recognizing graphic matroids. Combinatorica 1, 75–78 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Truemper, K.: Matroid Decomposition. Leibniz, Plano (1998)

    MATH  Google Scholar 

  45. Truemper, K.: A decomposition theory for matroids. V. Testing of matrix total unimodularity. J. Combin. Theory Ser. B 49, 241–281 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tutte, W.T.: An algorithm for determining whether a given binary matroid is graphic. Proc. Am. Math. Soc. 11, 905–917 (1960)

    MathSciNet  MATH  Google Scholar 

  47. Wagner, D.K.: A circuit characterization of graphic matroids. J. Combin. Theory Ser. B 118, 284–290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wagner, D.K.: A characterization of graphic matroids based on circuit orderings. SIAM J. Discrete Math. 32(2), 1139–1144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Walter, M., Truemper, K.: Implementation of a unimodularity test. Math. Program. Comput. 5, 57–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4, 47–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zaslavsky, T.: Biased graphs. II. The three matroids. J. Combin. Theory Ser. B 51, 46–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Combin. Dyn. Surv. Number DS8 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Papalamprou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papalamprou, K., Pitsoulis, L. & Kotnyek, B. A mathematical programming approach for recognizing binet matrices. Optim Lett (2023). https://doi.org/10.1007/s11590-023-02066-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11590-023-02066-w

Keywords

Navigation