Skip to main content
Log in

Around the log-rank conjecture

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The log-rank conjecture states that the communication complexity of a boolean matrix A is bounded by a polynomial in the log of the rank of A. Equivalently, it says that the chromatic number of a graph is bounded quasi-polynomially in the rank of its adjacency matrix. This old conjecture is well known among computer scientists and mathematicians, but despite extensive work it is still wide open. We survey results relating to the log-rank conjecture, describing the current state of affairs and collecting related questions. Most of the results we discuss are well known, but some points of view are new. One of our hopes is to paint a path to the log-rank conjecture that is made of a series of smaller questions, which might be more feasible to tackle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Aaronson, S. Ben-David and R. Kothari, Separations in query complexity using cheat sheets, in STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2016, pp. 863–876.

    MATH  Google Scholar 

  2. S. Aaronson, S. Ben-David, R. Kothari, S. Rao and A. Tal, Degree vs. approximate degree and quantum implications of Huang’s sensitivity theorem, in STOC’ 21—Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2021, pp. 1330–1342.

    Google Scholar 

  3. A V. Aho, J. D. Ullman and M. Yannakakis, On notions of information transfer in VLSI circuits, in STOC’ 83—Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, ACM, New York, 1983, pp. 133–139.

    Google Scholar 

  4. M. Ajtai, J. Komlós and E. Szemerédi, A note on Ramsey numbers, Journal of Combinatorial Theory. Series A 29 (1980), 354–360.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Alon, Perturbed identity matrices have high rank: proof and applications, Combinatorics, Probability, and Computing 18 (2009), 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Alon, T. Lee, A. Shraibman and S. Vempala, The approximate rank of a matrix and its algorithmic applications, in TOC‘13—Proceedings of the 2013 ACM Symposium on Theory of Computing, ACM, New York, 2013, pp. 675–684

    MATH  Google Scholar 

  7. N. Alon and P. Seymour, A counterexample to the rank-coloring conjecture, Journal of Graph Theory 13 (1989), 523–525.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & sons, Hoboken, NJ, 2008.

    Book  MATH  Google Scholar 

  9. A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha and J. Smotrovs, Separations in query complexity based on pointer functions, Journal of the ACM 64 (2017), Article no. 32.

  10. A. Anshu, N. Boddu and D. Touchette, Quantum log-approximate-rank conjecture is also false, in 2019 IEEE 60th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 2019, pp. 982–994.

    Google Scholar 

  11. E. Ben-Sasson, S. Lovett and N. Ron-Zewi, An additive combinatorics approach relating rank to communication complexity, in2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012, IEEE Computer Society, Los Alamitos, CA, 2012, pp. 177–186.

    MATH  Google Scholar 

  12. A. Chattopadhyay, N. S. Mande and S. Sherif, The log-approximate-rank conjecture is false, Journal of the ACM 67 (2020), Article no. 23.

  13. M. Dietzfelbinger, J. Hromkovic and G. Schnitger, A comparison of two lower-bound methods for communication complexity, Theoretical Computer Science 168 (1996), 39–51.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Fajtlowicz, On conjectures of Graffiti, Discrete Mathematics 72 (1988), 113–118.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Fiorini, S. Massar, S. Pokutta, H. Tiwary and R. de Wolf, Exponential lower bounds for polytopes in combinatorial optimization, Journal of the ACM 62 (2015), Article no. 17.

  16. D. Gavinsky and S. Lovett, En route to the log-rank conjecture: New reductions and equivalent formulations, in Automata, Languages, and Programming Lecture Notes in Computer Science, Vol. 8572, Springer, Heidelberg, 2014, pp. 514–524.

    Chapter  MATH  Google Scholar 

  17. M. Goos, T. Pitassi and T. Watson, Deterministic communication vs. partition number, SIAM Journal on Computing 47 (2018), 2435–2450.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Halstenberg and R. Reischuk, On different modes of communication, in STOC’ 88—Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, ACM, New York, 1988, pp. 162–172.

    MATH  Google Scholar 

  19. F. John, Extremum problems with inequalities as subsidiary conditions, in Traces and Emergence of Nonlinear Programming, Birkhäuser/Springer, Basel, 2014, pp. 197–215

    Chapter  Google Scholar 

  20. W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mapping into Hilbert space, in Conference in modern analysis and probability (New Haven, Conn., 1982), Contemporary Mathematics Vol. 26, American Mathematical Society, providence, RI, 1984, pp. 189–206.

    MATH  Google Scholar 

  21. B. Kalyanasundaram and G. Schnitger, The probabilistic communication complexity of set intersection, SIAM Journal on Discrete Mathematics 5 (1992), 545–557.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Kotlov, Rank and chromatic number of a graph, Journal of Graph Theory 26 (1997), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Kotlov and L. Lovász, The rank and size of graphs, Journal of Graph Theory 23 (1996), 185–189.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Krause, Geometric arguments yield better bounds for threshold circuits and distributed computing, Theoretical Computer Science 156 (1996), 99–117.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  26. T. Lee and A. Shraibman, An approximation algorithm for approximation rank, in 24th Annual IEEE Conference on Computational Complexity, IEEE Computer Society, Los Alamitos, CA, pp. 351–357.

  27. T. Lee and A. Shraibman, Lower bounds in communication complexity, Foundations and Trends in Theoretical Computer Science 3 (2009), 263–398.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Lee and S. Zhang, Composition theorems in communication complexity, in Automata, Languages, and Programming, Lecture Notes in Computer Science, Vol. 6198, Springer, Berlin, 2010, pp. 475–489.

    Chapter  Google Scholar 

  29. N. Linial and A. Shraibman, Learning complexity versus communication complexity, Combinatorics, Probability, and Computing 18 (2009), 227–245.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Linial and A. Shraibman, Lower bounds in communication complexity based on factorization norms, Random Structures & Algorithms 34 (2009), 368–394.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. E. Litvak and K. E. Tikhomirov, Singularity of sparse Bernoulli matrices, Duke Mathematical Journal 171 (2022), 1135–1233.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Lovász, Communication complexity: A survey. in Paths, Flows, and VLSI-Layout, Algorithms and Combinatorics, Vol. 9, Springer, berlin, 1990, pp. 235–265.

    Google Scholar 

  33. L. Lovász and M. Saks, Möbius functions and communication complexity, in 29th IEEE Annual Symposium on Foundations of Computer Science—FOCS 1988, IEEE Computer Society, Los Alamitos, CA, 1988, pp. 81–90.

    Google Scholar 

  34. L. Lovász and M. Saks. Communication complexity and combinatorial lattice theory, Journal of Computer and System Sciences 47 (1993), 322–349.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Lovett, Communication is bounded by root of rank, Journal of the ACM 63 (2016), Article no. 1.

  36. J. Matoušek, Efficient partition trees, Discrete & Computational Geometry 8 (1992), 315–334.

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Nisan and A. Wigderson, On rank vs. communication complexity, Combinatorica 15 (1995), 557–566.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. van Nuffelen, A bound for the chromatic number of a graph, American Mathematical Monthly 83 (1976), 265–266.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Raz and B. Spieker, On the “log-rank” conjecture in communication complexity, Combinatorica 15 (1995), 567–588.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Razborov, The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear, Discrete Mathematics 108 (1992), 393–396.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Razborov, On the distributional complexity of disjointness, Theoretical Computer Science 106 (1992), 385–390.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Sherstov, The pattern matrix method, SIAM Journal on Computing 40 2011, 1969–2000.

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Shi and Y. Zhu, Quantum communication complexity of block-composed functions, Quantum Information & Computation 9 (2009), 444–460.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Shigeta and K. Amano, Ordered biclique partitions and communication complexity problems, Discrete Applied Mathematics 184 (2015), 248–252.s

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Shraibman, The corruption bound, log-rank, and communication complexity, Information Processing Letters 141 (2019), 16–21.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Sinha and R. de Wolf, Exponential separation between quantum communication and logarithm of approximate rank, in 2019 IEEE 60th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, pp. 966–981.

  47. P. Turan, On an extremal problem in graph theory, Matematikai és Fizikai Lapok 48 (1941), 436–452.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Shraibman.

Additional information

To Nati, whose infinite curiosity and infectious enthusiasm inspires so many others

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Shraibman, A. Around the log-rank conjecture. Isr. J. Math. 256, 441–477 (2023). https://doi.org/10.1007/s11856-023-2517-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2517-5

Navigation