Skip to main content
Log in

Spectral dimension, Euclidean embeddings, and the metric growth exponent

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

For reversible random networks, we exhibit a relationship between the almost sure spectral dimension and the Euclidean growth exponent, which is the smallest asymptotic rate of volume growth over all embeddings of the network into a Hilbert space. Using metric embedding theory, it is then shown that the Euclidean growth exponent coincides with the metric growth exponent. This simplifies and generalizes a powerful tool for bounding the spectral dimension in random networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. O. Angel, T. Hutchcroft, A. Nachmias and G. Ray, Hyperbolic and parabolic unimodular random maps, Geometric and Functional Analysis 28 (2018), 879–942.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Aldous and R. Lyons, Processes on unimodular random networks, Electronic Journal of Probability 12 (2007), 1454–1508.

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Angel and O. Schramm, Uniform infinite planar triangulations, Communications in Mathematical Physics 241 (2003), 191–213.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric and Functional Analysis 2 (1992), 137–172.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Benjamini and N. Curien, Ergodic theory on stationary random graphs, Electronic Journal of Probability 17 (2012), Article no. 2401.

  6. J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel Journal of Mathematics 52 (1985), 46–52.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs, Electronic Journal of Probability 6 (2001), Article no. 96.

  8. E. Gwynne and T. Hutchcroft, Anomalous diffusion of random walk on random planar maps, Probability Theory and Related Fields 178 (2020), 567–611.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Ganguly and J. R. Lee, Chemical subdiffusivity of critical 2D percolation, Communications in Mathematical Physics 389 (2022), 695–714.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Ganguly, J. R. Lee and Y. Peres, Diffusive estimates for random walks on stationary random graphs of polynomial growth, Geometric and Functional Analysis 27 (2017), 596–630.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Gwynne and J. Miller, Random walk on random planar maps: Spectral dimension, resistance and displacement, Annals of Probability 49 (2021), 1097–1128.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Krikun, Local structure of random quadrangulations, https://arXiv.org/abs/math/0512304.

  13. J. R. Lee, Discrete uniformizing metrics on distributional limits of sphere packings, Geometric and Functional Analysis 28 (2018), 1091–1130.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. R. Lee, Conformal growth rates and spectral geometry on distributional limits of graphs, Annals of Probability 49 (2021), 2671–2731.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. R. Lee, Relations between scaling exponents in unimodular random graphs, https://arxiv.org/abs/2007.06548.

  16. N. Linial, E. London and Y. Rabinovich, The geometry of graphs and some of its algorithmic applications, Combinatorica 15 (1995), 215–245.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Linial, A. Magen and A. Naor, Girth and Euclidean distortion, Geometric and Functional Analysis 12 (2002), 380–394.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Naor, Y. Peres, O. Schramm and S. Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Mathematical Journal 134 (2006), 165–197.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lee.

Additional information

In honor of Nati Linial on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.R. Spectral dimension, Euclidean embeddings, and the metric growth exponent. Isr. J. Math. 256, 417–439 (2023). https://doi.org/10.1007/s11856-023-2520-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2520-x

Navigation