Skip to main content
Log in

Substructures in Latin squares

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove several results about substructures in Latin squares. First, we explain how to adapt our recent work on high-girth Steiner triple systems to the setting of Latin squares, resolving a conjecture of Linial that there exist Latin squares with arbitrarily high girth. As a consequence, we see that the number of order-n Latin squares with no intercalate (i.e., no 2 × 2 Latin subsquare) is at least \({({e^{- 9/4}}n - o(n))^{{n^2}}}\). Equivalently, \(\Pr [{\bf{N}} = 0] \ge {e^{- {n^2}/4 - o({n^2})}} = {e^{- (1 + o(1)){\mathbb{E}\bf{N}}}}\), where N is the number of intercalates in a uniformly random order-n Latin square.

In fact, extending recent work of Kwan, Sah, and Sawhney, we resolve the general large-deviation problem for intercalates in random Latin squares, up to constant factors in the exponent: for any constant 0 < δ ≤ 1 we have \(\Pr [{\bf{N}} \le (1 - \delta){\mathbb{E}\bf{N}}] = \exp (- \Theta ({n^2}))\) and for any constant δ > 0 we have \(\Pr [{\bf{N}} \ge (1 + \delta){\mathbb{E}\bf{N}}] = \exp (- \Theta ({n^{4/3}}log\,n))\).

Finally, as an application of some new general tools for studying substructures in random Latin squares, we show that in almost all order-n Latin squares, the number of cuboctahedra (i.e., the number of pairs of possibly degenerate 2 × 2 submatrices with the same arrangement of symbols) is of order n4, which is the minimum possible. As observed by Gowers and Long, this number can be interpreted as measuring “how associative” the quasigroup associated with the Latin square is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Barber, S. Glock, D. Kühn, A. Lo, R. Montgomery and D. Osthus, Minimalist designs, Random Structures & Algorithms 57 (2020), 47–63.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Barber, D. Kühn, A. Lo, D. Osthus and A. Taylor, Clique decompositions of multipartite graphs and completion of Latin squares, Journal of Combinatorial Theory. Series A 151 (2017), 146–201.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bartlett, Completions of ϵ-dense partial Latin squares, Journal of Combinatorial Designs 21 (2013), 447–463.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Bohman and L. Warnke, Large girth approximate Steiner triple systems, Journal of the London Mathematical Society 100 (2019), 895–913.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fl. C. Bowditch and P. J. Dukes, Fractional triangle decompositions of dense 3-partite graphs, Journal of Combinatorics 10 (2019), 255–282.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Brandt, Über eine Verallgemeinerung des Gruppenbegriffes, Mathematische Annanalen 96 (1927), 360–366.

    Article  Google Scholar 

  7. L. M. Brègman, Certain properties of nonnegative matrices and their permanents, Doklady Akademii Nauk SSSR 211 (1973), 27–30.

    MathSciNet  MATH  Google Scholar 

  8. J. M. Browning, P. J. Cameron and I. M. Wanless, Bounds on the number of small Latin subsquares, Journal of Combinatorial Theory. Series A 124 (2014), 41–56.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. J. Cavenagh, C. Greenhill and I. M. Wanless, The cycle structure of two rows in a random Latin square, Random Structures & Algorithms 33 (2008), 286–309.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Dénes and A. D. Keedwell, Latin Squares, Annals of Discrete Mathematics, Vol. 46, North-Holland, Amsterdam, 1991.

    MATH  Google Scholar 

  11. A. Drápal and I. M. Wanless, Maximally nonassociative quasigroups via quadratic orthomorphisms, Algebraic Combinatorics 4 (2021), 501–515.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. P. Egorychev, The solution of van der Waerden’s problem for permanents, Advances in Mathematics 42 (1981), 299–305.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. I. Falikman, Proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix, Matematicheskie Zametki 29 (1981), 931–938, 957.

    MathSciNet  MATH  Google Scholar 

  14. A. Ferber and M. Kwan, Almost all Steiner triple systems are almost resolvable, Forum of Mathematics. Sigma 8 (2020), Article no. e39.

  15. P. Frankl, Z. Füredi and G. Kalai, Shadows of colored complexes, Mathematica Scandinavixa 63 (1988), 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. A. Freedman, On tail probabilities for martingales, Annals of Probability 3 (1975), 100–118.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Glock, D. Kühn, A. Lo and D. Osthus, On a conjecture of Erdős on locally sparse Steiner triple systems, Combinatorica 40 (2020), 363–403.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. D. Godsil and B. D. McKay, Asymptotic enumeration of Latin rectangles, Journal of Combinatorial Theory. Series B 48 (1990), 19–44.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. T. Gowers and J. Long, Partial associativity and rough approximate groups, Geometric and Functional Analysis 30 (2020), 1583–1647.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Harel, F. Mousset and W. Samotij, Upper tails via high moments and entropic stability, Duke Mathematical Journal 171 (2022), 2089–2192.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. T. Jacobson and P. Matthews, Generating uniformly distributed random Latin squares, Journal of Combinatorial Designs 4 (1996), 405–437.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Janson, T. Luczak and A. Rucinski, Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

    Book  MATH  Google Scholar 

  23. S. Janson and A. Ruciński, The infamous upper tail, Random Structures & Algorithms 20 (2002), 317–342.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. D. Keedwell and J. Dénes, Latin Squares and Their Applications, Elsevier/North-Holland, Amsterdam, 2015.

    MATH  Google Scholar 

  25. P. Keevash, The existence of designs, https://arxiv.org/abs/1401.3665.

  26. P. Keevash, The existence of designs II, https://arxiv.org/abs/1802.05900.

  27. P. Keevash, Counting designs, Journal of the European Mathematical Society 20 (2018), 903–927.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Mathematical Journal 2 (1847), 191–204.

    Google Scholar 

  29. A. Kotzig, C. C. Lindner and A. Rosa, Latin squares with no subsquares of order two and disjoint Steiner triple systems, Utilitas Mathematica 7 (1975), 287–294.

    MathSciNet  MATH  Google Scholar 

  30. A. Kotzig and J. Turgeon, On certain constructions for Latin squares with no Latin subsquares of order two, Discrete Mathematics 16 (1976), 263–270.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Kwan, Almost all Steiner triple systems have perfect matchings, Proceedings of the London Mathematical Society 121 (2020), 1468–1495.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Kwan, A. Sah and M. Sawhney, Large deviations in random Latin squares, Bulletin of the London Mathematical Society 54 (2022), 1420–1438.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Kwan, A. Sah and M. Sawhney, Note on random Latin squares and the triangle removal process, https://arxiv.org/abs/2109.15201.

  34. M. Kwan, A. Sah, M. Sawhney and M. Simkin, High-girth Steiner triple systems, https://arxiv.org/abs/2201.04554v3.

  35. M. Kwan and B. Sudakov, Intercalates and discrepancy in random Latin squares, Random Structures & Algorithms 52 (2018), 181–196.

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Linial and Z. Luria, An upper bound on the number of high-dimensional permutations, Combinatorica 34 (2014), 471–486.

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Linial and Z. Luria, Discrepancy of high-dimensional permutations, Discrete Analysis (2016), Article no. 11.

  38. N. Linial and M. Simkin, Monotone subsequences in high-dimensional permutations, Combinatorics, Probability and Computing 27 (2018), 69–83. MR 3734331

    Article  MathSciNet  MATH  Google Scholar 

  39. N. Linial, Challenges of high-dimensional combinatorics, László Lovász 70th Birthday Conference, Budapest, 2018, https://www.cs.huji.ac.il/~nati/PAPERS/challenges-hdc.pdf.

  40. P. Lisonĕk, Maximal nonassociativity via fields, Designs, Codes and Cryptography 88 (2020), 2521–2530.

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Maenhaut, I. M. Wanless and B. S. Webb, Subsquare-free Latin squares of odd order, European Journal of Combinatorics 28 (2007), 322–336.

    Article  MathSciNet  MATH  Google Scholar 

  42. B. D. McKay and I. M. Wanless, Most Latin squares have many subsquares, Journal of Combinatorial Theory. Series A 86 (1999), 322–347.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. McLeish, On the existence of Latin squares with no subsquares of order two, Utilitas Mathematica 8 (1975), 41–53.

    MathSciNet  MATH  Google Scholar 

  44. R. Montgomery, Fractional clique decompositions of dense partite graphs, Combinatorics, Probability and Computing 26 (2017), 911–943.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. O. Pittenger, Mappings of Latin squares, Linear Algebra and its Applications 261 (1997), 251–268.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Freddie Manners for suggesting the enumeration of cuboctahedra in random Latin squares. We thank Zach Hunter for pointing out typographical mistakes as well as a minor error in the statement of Lemma 8.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Simkin.

Additional information

Dedicated to Nati Linial, with thanks and appreciation

Sah and Sawhney were supported by NSF Graduate Research Fellowship Program DGE-1745302.

Sah was supported by the PD Soros Fellowship.

Simkin was supported by the Center of Mathematical Sciences and Applications at Harvard University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwan, M., Sah, A., Sawhney, M. et al. Substructures in Latin squares. Isr. J. Math. 256, 363–416 (2023). https://doi.org/10.1007/s11856-023-2513-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2513-9

Navigation