Skip to main content
Log in

Connections between graphs and matrix spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given a bipartite graph G, the graphical matrix space \(\cal{S}_{G}\) consists of matrices whose non-zero entries can only be at those positions corresponding to edges in G. Tutte (J. London Math. Soc., 1947), Edmonds (J. Res. Nat. Bur. Standards Sect. B, 1967) and Lovász (FCT, 1979) observed connections between perfect matchings in G and full-rank matrices in \(\cal{S}_{G}\). Dieudonné (Arch. Math., 1948) proved a tight upper bound on the dimensions of those matrix spaces containing only singular matrices. The starting point of this paper is a simultaneous generalization of these two classical results: we show that the largest dimension over subspaces of \(\cal{S}_{G}\) containing only singular matrices is equal to the maximum size over subgraphs of G without perfect matchings, based on Meshulam’s proof of Dieudonné’s result (Quart. J. Math., 1985).

Starting from this result, we go on to establish more connections between properties of graphs and matrix spaces. For example, we establish connections between acyclicity and nilpotency, between strong connectivity and irreducibility, and between isomorphism and conjugacy/congruence. For each connection, we study three types of correspondences, namely the basic correspondence, the inherited correspondence (for subgraphs and subspaces), and the induced correspondence (for induced subgraphs and restrictions). Some correspondences lead to intriguing generalizations of classical results, such as Dieudonné’s result mentioned above, and a celebrated theorem of Gerstenhaber regarding the largest dimension of nil matrix spaces (Amer. J. Math., 1958).

Finally, we show some implications of our results to quantum information and present open problems in computational complexity motivated by these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. F. Adams, Vector fields on spheres, Annals of Mathematics 75 (1962), 603–632.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. A. Albert, A theory of power-associative commutative algebras, Transactions of the American Mathematical Society 69 (1950), 503–527.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. F. Adams, P. D. Lax and R. S. Phillips, On matrices whose real linear combinations are nonsingular, Proceedings of the American Mathematical Society 16 (1965), 318–322.

    MathSciNet  MATH  Google Scholar 

  4. M. D. Atkinson, Spaces of matrices with several zero eigenvalues, Bulletin of the London Mathematical Society 12 (1980), 89–95.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Baer, Groups with abelian central quotient group, Transactions of the American Mathematical Society 44 (1938), 357–386.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Ben-Aroya, O. Schwartz and A. Ta-Shma, Quantum expanders: Motivation and construction, Theory of Computing 6 (2010), 47–79.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Bannink, J. Briët, F. Labib and H. Maassen, Quasirandom quantum channels, Quantum 4 (2020), Article no. 298.

  8. X. Bei, S. Chen, J. Guan, Y. Qiao and X. Sun, From independent sets and vertex colorings to isotropic spaces and isotropic decompositions: Another bridge between graphs and alternating matrix spaces, SIAM Journal on Computing 50 (2021), 924–971.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, Information Processing Letters 18 (1984), 147–150.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. F. Buss, G. S. Frandsen and J. O. Shallit, The computational complexity of some problems of linear algebra, Journal of Computer and Systems Sciences 58 (1999), 572–596.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bang-Jensen and G. Z. Gutin, Digraphs, Springer Monographs in Mathematics, Springer, London, 2008.

    MATH  Google Scholar 

  12. J. Bourgain, Expanders and dimensional expansion, Comptes Rendus Mathématique. Académie des Sciences. Paris 347 (2009), 357–362.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Brachter and P. Schweitzer, On the Weisfeiler-Leman dimension of finite groups, in Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, ACM, New York, 2020, pp. 287–300.

    Chapter  MATH  Google Scholar 

  14. J. Bourgain and A. Yehudayoff, Expansion in SL2(ℝ) and monotone expanders, Geometric and Functional Analysis 23 (2013), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. A. Chávez-Domínguez and A. T. Swift, Connectivity for quantum graphs, Linear Algebra and its Applications 608 (2021), 37–53.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. M. Cohn, The word problem for free fields: A correction and an addendum, Journal of Symbolic Logic 40 (1975), 69–74.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Archiv der Mathematik 1 (1948), 282–287.

    Article  MATH  Google Scholar 

  18. R. Diestel, Graph Theory, Graduate Texts in Mathematics, Vol. 173, Springer, Berlin, 2017.

    Book  MATH  Google Scholar 

  19. Z. Dvir and A. Shpilka, Towards dimension expanders over finite fields, Combinatorica 31 (2009), 305–320.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. de Seguins Pazzis, On Gerstenhaber’s theorem for spaces of nilpotent matrices over a skew field, Linear Algebra and its Applications 438 (2013), 4426–4438.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Duan, S. Severini and A. Winter, Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number, IEEE Transactions on Information Theory 59 (2013), 1164–1174.

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Dvir and A. Wigderson, Monotone expanders: Constructions and applications, Theory of Computing 6 (2010), 291–308.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Edmonds, Systems of distinct representatives and linear algebra, Journal of Research of the National Bureau of Standards. Section B. Mathematics and Mathematical Physics 71B (1967), 241–245.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Eisenbud and J. Harris, Vector spaces of matrices of low rank, Advances in Mathematics 70 (1988), 135–155.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. E. Evans and R. Høegh-Krohn, Spectral properties of positive maps on C*-algebras, Journal of the London Mathematical Society 2 (1978), 345–355.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Futorny, J. A. Grochow and V. V. Sergeichuk, Wildness for tensors, Linear Algebra and its Applications 566 (2019), 212–244.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Fenner, R. Gurjar and T. Thierauf, Bipartite perfect matching is in Quasi-NC, SIAM Journal on Computing 50 (2021), 218–235.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Flanders, On spaces of linear transformations with bounded rank, Journal of the London Mathematical Society 1 (1962), 10–16.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare substitutionen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1897), 944–1015.

  30. M. A. Forbes and A. Shpilka, Explicit Noether normalization for simultaneous conjugation via polynomial identity testing, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 8096, Springer, Heidelberg, 2013, pp. 527–542.

    Chapter  Google Scholar 

  31. M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, I, American Journal of Mathematics 80 (1958), 614–622.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Garg, L. Gurvits, R. M. Oliveira and A. Wigderson, Operator scaling: Theory and applications, Foundations of Computational Mathematics 20 (2020), 223–290.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Gurvits, Classical complexity and quantum entanglement, Journal of Computer and Systems Sciences 69 (2004), 448–484.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Hall, On representatives of subsets, Journal of the London Mathematical Society 1 (1935), 26–30.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. W. Harrow, Quantum expanders from any classical Cayley graph expander, Quantum Information & Computation 8 (2008), 715–721.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. B. Hastings, Random unitaries give quantum expanders, Physical Review. A 76 (2007), Article no. 032315.

  37. M. Hamada and H. Hirai, Computing the nc-rank via discrete convex optimization on CAT (0) spaces, SIAM Journal on Applied Algebra and Geometry 5 (2021), 455–478.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  39. X. He and Y. Qiao, On the Baer–Lovász–Tutte construction of groups from graphs: Isomorphism types and homomorphism notions, European Journal of Combinatorics 98 (2021), Article no. 103404.

  40. G. Ivanyos, M. Karpinski, Y. Qiao and M. Santha, Generalized Wong sequences and their applications to Edmonds’ problems, Journal of Computer and Systems Sciences 81 (2015), 1373–1386.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Ivanyos, M. Karpinski and N. Saxena, Deterministic polynomial time algorithms for matrix completion problems, SIAM Journal on Computing 39 (2010), 3736–3751.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Ivanyos, Y. Qiao and K. V. Subrahmanyam, Non-commutative Edmonds’ problem and matrix semi-invariants, Computational Complexity 26 (2017), 717–763.

    Article  MathSciNet  MATH  Google Scholar 

  43. G. Ivanyos, Y. Qiao and K. V. Subrahmanyam, Constructive non-commutative rank computation is in deterministic polynomial time, Computational Complexity 27 (2018), 561–593.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. M. Karp, Reducibility among combinatorial problems, in Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, York-town Heights, NY, 1972), Pleanum, New York, 1972, pp. 85–103.

    Google Scholar 

  45. V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Computational Complexity 13 (2004), 1–46.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. M. Karp, E. Upfal and A. Wigderson, Constructing a perfect matching is in random NC, Combinatorica 6 (1986), 35–48.

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Lang, Algebra, Graduate Texts in Mathematics, Vol. 211, Springer New York, 2002.

    Book  MATH  Google Scholar 

  48. N. Linial, L. Lováasz and A. Wigderson, Rubber bands, convex embeddings and graph connectivity, Combinatorica 8 (1988), 91–102.

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Lovaász, On determinants, matchings, and random algorithms, in Fundamentals of Computation Theory, Mathematical Research, Vol. 2, Akademie, Berlin, 1979, pp. 565–574.

    Google Scholar 

  50. L. Lovaász, Singular spaces of matrices and their application in combinatorics, Boletim da Sociedade Brasileira de Matemáatica 20 (1989), 87–99.

    Article  MathSciNet  Google Scholar 

  51. Y. Li and Y. Qiao, Linear algebraic analogues of the graph isomorphism problem and the Erdős-Renyi model, in 58th IEEE Annual Symposium on Foundations of Computer Science—FOCS 2017, IEEE Computer Society, Los Alamitos, CA, 2017, pp. 463–474.

    Chapter  Google Scholar 

  52. Y. Li and Y. Qiao, Group-theoretic generalisations of vertex and edge connectivities, Proceedings of the American Mathematical Society 148 (2020), 4679–4693.

    Article  MathSciNet  MATH  Google Scholar 

  53. Y. Li, Y. Qiao, A. Wigderson, Y. Wigderson and C. Zhang, On linear-algebraic notions of expansion, https://arxiv.org/abs/2212.13154.

  54. A. Lubotzky and E. Zelmanov, Dimension expanders, Journal of Algebra 319 (2008), 730–738.

    Article  MathSciNet  MATH  Google Scholar 

  55. R. Meshulam, On the maximal rank in a subspace of matrices, Quarterly Journal of Mathematics 36 (1985), 225–229.

    Article  MathSciNet  MATH  Google Scholar 

  56. G. W. MacDonald, J. A. MacDougall and L. G. Sweet, On the dimension of linear spaces of nilpotent matrices, Linear Algebra and its Applications 436 (2012), 2210–2230.

    Article  MathSciNet  MATH  Google Scholar 

  57. B. Mathes, M. Omladič and H. Radjavi, Linear spaces of nilpotent matrices, Linear Algebra and its Applications 149 (1991), 215–225.

    Article  MathSciNet  MATH  Google Scholar 

  58. K. Mulmuley, U. V. Vazirani and V. V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7 (1987), 105–113.

    Article  MathSciNet  MATH  Google Scholar 

  59. V. Makam and A. Wigderson, Singular tuples of matrices is not a null cone (and the symmetries of algebraic varieties), Journal für die Reine und Angewandte Mathematik 780 (2021), 79–131.

    Article  MathSciNet  MATH  Google Scholar 

  60. C. M. Ortiz and V. I. Paulsen, Lovász theta type norms and operator systems, Linear Algebra and its Applications 477 (2015), 128–147.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. Pisier, Quantum expanders and geometry of operator spaces, Journal of the European Mathematical Society 16 (2014), 1183–1219.

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Qiao, Turán and Ramsey problems for alternating multilinear maps, https://arxiv.org/abs/2007.12820.

  63. Y. Qiao, Enumerating alternating matrix spaces over finite fields with explicit coordinates, Discrete Mathematics 344 (2021), Article no. 112580.

  64. T. Rossmann, Enumerating conjugacy classes of graphical groups over finite fields, Bulletin of the London Mathematical Society 54 (2022), 1923–1943.

    Article  MathSciNet  MATH  Google Scholar 

  65. T. Rossmann and C. Voll, Groups, graphs, and hypergraphs: Average sizes of kernels of generic matrices with support constraints, Memoirs of the American Mathematical Society, to appear.

  66. O. E. Raz and A. Wigderson, Subspace arrangements, graph rigidity and derandomization through submodular optimization, in Building Bridges. II, Bolyai Society Mathematical Studies, Vol. 28, Springer, Berlin, 2019, pp. 377–415.

    Google Scholar 

  67. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, Journal of the Association for Computing Machinery 27 (1980), 701–717.

    Article  MathSciNet  MATH  Google Scholar 

  68. V. N. Serežkin, On linear transformations preserving nilpotency, Izvestiya Akademii Nauk BSSR. Seriya Fiziko-Matematicheskikh Nauk 6 (1985), 46–50.

    MathSciNet  Google Scholar 

  69. C. E. Shannon, The zero error capacity of a noisy channel, Institute of Radio Engineers Transactions on Information Theory IT-2 (1956), 8–19.

    Article  MathSciNet  Google Scholar 

  70. O. Svensson and J. Tarnawski, The matching problem in general graphs is in quasi-NC, in 58th IEEE Annual Symposium on Foundations of Computer Science-FOCS 2017, IEEE Computer Society, Los Alamitos, CA, 2017, pp. 696–707.

    Chapter  Google Scholar 

  71. A. Shpilka and A. Yehudayoff, Arithmetic circuits: a survey of recent results and open questions, Foundations and Trends in Theoretical Computer Science 5 (2009), 207–388.

    Article  MathSciNet  MATH  Google Scholar 

  72. W. T. Tutte, The factorization of linear graphs, Journal of the London Mathematical Society 22 (1947), 107–111.

    Article  MathSciNet  MATH  Google Scholar 

  73. L. G. Valiant, Completeness classes in algebra, in Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing (Atlanta, Ga., 1979), ACM, New York, 1979, pp. 249–261.

    Google Scholar 

  74. E. O. Q. Vanegas and J. C. G. Fernandez, Nilpotent linear spaces and Albert’s problem, Linear Algebra and its Applications 518 (2017), 57–78.

    Article  MathSciNet  MATH  Google Scholar 

  75. N. Weaver, Quantum graphs as quantum relations, Journal of Geometric Analysis 31 (2021), 9090–9112.

    Article  MathSciNet  MATH  Google Scholar 

  76. M. M. Wolf, Quantum channels & operations: Guided tour, Lecture Notes, https://mediatum.ub.tum.de/doc/1701036/document.pdf.

  77. F. Zhang, The Schur Complement and Its Applications, Numerical Methods and Algorithms, Vol. 4, Springer, New York, 2005.

    Book  MATH  Google Scholar 

  78. R. Zippel, Probabilistic algorithms for sparse polynomials, in Symbolic and Algebraic Computation, (EUROSAM’ 79, An International Symposiumon Symbolic and Algebraic Computation, Marseille, France, 1979), Lecture Notes in Computer Science, Vol. 72, Springer, Berlin-New York, 1979, pp. 216–226.

    Google Scholar 

  79. R. Zenklusen, B. Ries, C. Picouleau, D. de Werra, M.-C. Costa and C. Bentz, Blockers and transversals, Discrete Mathematics 309 (2009), 4306–4314.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Y. Q. would like to thank George Glauberman for helping him with Proposition 7.1. We would also like to thank an anonymous referee for helpful comments and intriguing suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Wigderson.

Additional information

Dedicated to Nati Linial on the occasion of his 70th birthday

Research supported in part by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number JPMXS0120319794.

Research supported in part by Australian Research Council DP200100950.

Research supported in part by NSF grant CCF-1900460.

Research supported in part by NSF GRFP Grant DGE-1656518, ERC Consolidator Grant 863438, ERC Starting Grant 101044123 and NSF-BSF Grant 20196.

Research supported by Australian Research Council DP200100950 and the Sydney Quantum Academy, Sydney, NSW, Australia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qiao, Y., Wigderson, A. et al. Connections between graphs and matrix spaces. Isr. J. Math. 256, 513–580 (2023). https://doi.org/10.1007/s11856-023-2515-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2515-7

Navigation