Skip to main content
Log in

High order sliding mode control for restoration of a population of predators in a Lotka-Volterra system

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Human-induced extinction and rapid ecological changes require the development of techniques that can help avoid extinction of endangered species. The most used strategy to avoid extinction is reintroduction of the endangered species, but only 31% of these attempts are successful and they require up to 15 years for their results to be evaluated. In this research, we propose a novel strategy that improves the chances of survival of endangered predators, like lynx, by controlling only the availability of prey. To simulate the prey-predator relationship we used a Lotka-Volterra model to analyze the effects of varying prey availability on the size of the predator population. We calculate the number of prey necessary to support the predator population using a high-order sliding mode control (HOSMC) that maintains the predator population at the desired level. In the wild, nature introduces significant and complex uncertainties that affect species’ survival. This complexity suggests that HOSMC is a good choice of controller because it is robust to variability and does not require prior knowledge of system parameters. These parameters can also be time varying. The output measurement required by the HOSMC is the number of predators. It can be obtained using continuous monitoring of environmental DNA that measures the number of lynxes and prey in a specific geographic area. The controller efficiency in the presence of these parametric uncertainties was demonstrated with a numerical simulation, where random perturbations were forced in all four model parameters at each simulation step, and the controller provides the specific prey input that will maintain the predator population. The simulation demonstrates how HOSMC can increase and maintain an endangered population (lynx) in just 21–26 months by regulating the food supply (hares), with an acceptable maximal steady-state error of 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data and parameters used are included in the paper.

References

  1. Lotka, A.J.: Elements of physical biology. Science progress in the twentieth century (1919–1933). 21(82), 341–343 (1926)

  2. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  ADS  MATH  Google Scholar 

  3. Sun, G.-Q., Zhang, H.-T., Song, Y.-L., Li, L., Jin, Z.: Dynamic analysis of a plant-water model with spatial diffusion. J. Differ. Equ. 329, 395–430 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Takeuchi, Y.: Global Dynamical Properties of Lotka-Volterra Systems, pp. 5–8. World Scientific, USA (1996)

    Book  MATH  Google Scholar 

  5. Korman, P.: On the dynamics of two classes of periodic ecological models. J. Comput. Appl. Math. 52(1), 267–275 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Samanta, G., et al.: Deterministic, Stochastic and Thermodynamic Modelling of Some Interacting Species, pp. 4–13. Springer, Berlin (2021)

    Book  MATH  Google Scholar 

  7. Kurihara, Y., Watanabe, K., Tanaka, H.: A sleep model and an observer using the Lotka-Volterra equation for real-time estimation of sleep. Artif. Life Robot. 21(1), 132–139 (2016)

    Article  Google Scholar 

  8. Solomon, S., et al.: Generalized Lotka-Volterra (glv) models of stock markets. Adv. Comp. Syst. 3(01n04), 301–322 (2000)

    Article  Google Scholar 

  9. Arató, M.: A famous nonlinear stochastic equation (Lotka-Volterra model with diffusion). Math. Comput. Model. 38(7–9), 709–726 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X., Jiang, D., Mao, X.: Population dynamical behavior of Lotka-Volterra system under regime switching. J. Comput. Appl. Math. 232(2), 427–448 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. López, I., Gámez, M., Garay, J., Varga, Z.: Monitoring in a Lotka-Volterra model. Biosystems 87(1), 68–74 (2007)

    Article  Google Scholar 

  12. Liu, X., Rohlf, K.: Impulsive control of a Lotka-Volterra system. IMA J. Math. Control. Inf. 15(3), 269–284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vaidyanathan, S.: Adaptive biological control of generalized Lotka-Volterra three-species biological system. Int. J. PharmTech Res. 8(4), 622–631 (2015)

    Google Scholar 

  14. Zhang, Y., Yan, X., Liao, B., Zhang, Y., Ding, Y.: Z-type control of populations for Lotka-Volterra model with exponential convergence. Math. Biosci. 272, 15–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Perc, M., Szolnoki, A., Szabó, G.: Cyclical interactions with alliance-specific heterogeneous invasion rates. Phys. Rev. E 75(5), 052102 (2007)

    Article  ADS  Google Scholar 

  16. Szolnoki, A., Mobilia, M., Jiang, L.-L., Szczesny, B., Rucklidge, A.M., Perc, M.: Cyclic dominance in evolutionary games: a review. J. R. Soc. Interface 11(100), 20140735 (2014)

    Article  Google Scholar 

  17. Szolnoki, A., Perc, M.: Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies. Phys. Rev. X 3(4), 041021 (2013)

    Google Scholar 

  18. Szolnoki, A., Perc, M., Szabó, G.: Defense mechanisms of empathetic players in the spatial ultimatum game. Phys. Rev. Lett. 109(7), 078701 (2012)

    Article  ADS  Google Scholar 

  19. Nie, L., Teng, Z., Hu, L., Peng, J.: The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator. Biosystems 98(2), 67–72 (2009)

    Article  Google Scholar 

  20. Molnár, S., López, I., Gámez, M., Garay, J.: A two-agent model applied to the biological control of the sugarcane borer (Diatraea saccharalis) by the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes. Biosystems 141, 45–54 (2016)

    Article  Google Scholar 

  21. Lagmiri, S.N., Elalami, N., et al.: Control of Lotka-Volterra three species system via a high gain observer design. Int. J. Comput. Appl. 77(15) (2013)

  22. El-Gohary, A., Al-Ruzaiza, A.: Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solit. Fractals 34(2), 443–453 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Pavel, L., Chang, L.: Lyapunov-based boundary control for a class of hyperbolic Lotka-Volterra systems. IEEE Trans. Autom. Control 57(3), 701–714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems, pp. 115–129. Taylor & Francis Ltd (1999)

    Google Scholar 

  25. Levant, A.: Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence. IEEE Trans. Autom. Control 46(9), 1447–1451 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gallardo Hernández, A.G., Fridman, L., Levant, A., Shtessel, Y., Leder, R., Monsalve, C.R., Andrade, S.I.: High-order sliding-mode control for blood glucose: Practical relative degree approach. Control. Eng. Pract. 21(5), 747–758 (2013)

    Article  Google Scholar 

  27. Levant, A.: Quasi-continuous high-order sliding-mode controllers. IEEE Trans. Autom. Control 50(11), 1813 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Levant, A., Pavlov, Y.: Generalized homogeneous quasi-continuous controllers. Int. J. Robust Nonlinear Control 18(4–5), 385–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rodrıguez, A., Delibes, M.: Population fragmentation and extinction in the Iberian lynx. Biol. Cons. 109(3), 321–331 (2003)

    Article  Google Scholar 

  30. Burstahler, C.M.: Variation in facultative diet specialization of Canada lynx. (2016). http://hdl.handle.net/1993/32958

    Google Scholar 

  31. Azhmyakov, V., Londoño, C., Osorio, P., Rojas, A., Puerta, M.E., Trujillo, L.A.G.: Consistent approximations of the control-affine systems with bounded uncertainties: Application to the controlled lotka-volterra dynamics. In: 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), pp. 1–6. IEEE (2019)

    Google Scholar 

  32. Mueller, S.A., Reiners, T.E., Middelhoff, T.L., Anders, O., Kasperkiewicz, A., Nowak, C.: The rise of a large carnivore population in central Europe: Genetic evaluation of lynx reintroduction in the Harz mountains. Conserv. Genet. 21(3), 577–587 (2020)

    Article  Google Scholar 

  33. Devineau, O., Shenk, T.M., White, G.C., Doherty, P.F., Jr., Lukacs, P.M., Kahn, R.H.: Evaluating the Canada lynx reintroduction programme in Colorado: Patterns in mortality. J. Appl. Ecol. 47(3), 524–531 (2010)

    Article  Google Scholar 

  34. Bohmann, K., Evans, A., Gilbert, M.T.P., Carvalho, G.R., Creer, S., Knapp, M., Yu, D.W., de Bruyn, M.: Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29(6), 358–367 (2014)

    Article  Google Scholar 

  35. Lynggaard, C., Bertelsen, M.F., Jensen, C.V., Johnson, M.S., Frøslev, T.G., Olsen, M.T., Bohmann, K.: Airborne environmental dna for terrestrial vertebrate community monitoring. Curr. Biol. 32(3), 701–707 (2022)

    Article  Google Scholar 

  36. Rockwood, L.L.: Introduction to Population Ecology. John Wiley & Sons, United Kingdom (2015)

    Google Scholar 

  37. Berardo, C., Geritz, S.: Coevolution of the reckless prey and the patient predator. J. Theor. Biol. 530, 110873 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mahaffy, J.: Mathematical Modeling Lecture Notes, pp. 64–72. Montezuma Publishing, USA (2017)

    Google Scholar 

  39. Chasnov, J.: Mathematical biology. Lecture notes for MATH 4333, 49–59 (2009)

    Google Scholar 

  40. Isidori, A.: Nonlinear Control Systems. Springer, Berlin (2013)

    MATH  Google Scholar 

  41. Li, J., Sun, G.-Q., Jin, Z.: Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete Contin. Dyn. Syst. B 27(4), 2147–2172 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Levant, A.: Robustness of homogeneous sliding modes to relative degree fluctuations. IFAC Proc. Vol. 42(6), 167–172 (2009)

    Article  Google Scholar 

  43. Karki, J.: Active low-pass filter design. Texas Instruments (2000). (Application report)

    Google Scholar 

  44. Knoke, B., Marhl, M., Perc, M., Schuster, S.: Equality of average and steady-state levels in some nonlinear models of biological oscillations. Theory Biosci. 127(1), 1–14 (2008)

    Article  Google Scholar 

  45. Smith, T.M., Smith, R.L.: Ecologia 6/e. (2001)

    Google Scholar 

  46. Mladenoff, D.J., Haight, R.G., Sickley, T.A., Wydeven, A.P.: Causes and implications of species restoration in altered ecosystems. Bioscience 47(1), 21–31 (1997)

    Article  Google Scholar 

  47. Li, J., Sun, G.-Q., Guo, Z.-G.: Bifurcation analysis of an extended Klausmeier-Gray-Scott model with infiltration delay. Stud. Appl. Math. 148(4), 1519–1542 (2022)

    Article  MathSciNet  Google Scholar 

  48. Gallardo-Hernández, A.G., Escobar, J.E., Leder, R., Pérez, A.L.H., Fridman, L., Dávila, J., Monsalve, C.R., Andrade, S.I.: High-order sliding-mode control for anesthesia, pp. 201–204. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013)

    Google Scholar 

  49. Pisano, A., Usai, E.: Output-feedback control of an underwater vehicle prototype by higher-order sliding modes. Automatica 40(9), 1525–1531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

González-Olvera, M.A. wants to thank UACM for its support of this work via Projects UACM-CCyT-2022-13 and UACM-CCYT-2023-IMP-05.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Ana Gabriela Gallardo-Hernandez.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, J.A., Gallardo-Hernandez, A.G., Gonzalez-Olvera, M.A. et al. High order sliding mode control for restoration of a population of predators in a Lotka-Volterra system. J Biol Phys 49, 509–520 (2023). https://doi.org/10.1007/s10867-023-09643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09643-1

Keywords

Navigation