Skip to main content
Log in

Activation of H2 Molecules on Platinum and Platinum–Vanadium Clusters: DFT Quantum Chemical Modeling

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The activation of H2 molecules by Pt4 and Pt3V clusters was studied by the nudged elastic band (NEB) DFT/PBE0/def2tzvp quantum chemical method with construction of minimum energy paths (MEPs). In the case of Pt4 and Pt3V clusters, barrier-free dissociative adsorption of H2 molecules occurs at the platinum centers, while molecular adsorption of hydrogen occurs on the vanadium atom in Pt3V with a slight weakening of the H−H bond, but without its breaking. The specific features of coordination of H2 molecules are explained at the level of the MO method. Migration of the H atom from one cluster metal center to another in the model clusters (as probably in the case of hydrogen spillover) occurs at low activation barriers in the direction of the displacement vector corresponding to the normal vibrations of the system in the transition state. A significant role of Pt−H−Pt and V−H−Pt bridging groups in hydrogen migration has been revealed: they facilitate the transition of H atoms from one metal center of the cluster to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The catalyst based on Pt3V, whose synthesis is described in [10], is planned for use in the hydrogenation/dehydrogenation of toluene/methylcyclohexane.

REFERENCES

  1. D’Souza, L. and Regalbuto, J.R., Stud. Surf. Sci. Catal., 2010, vol. 175, p. 715. https://doi.org/10.1016/S0167-2991(10)75143-0

    Article  Google Scholar 

  2. Chotisuwan, S., Wittayakun, J., and Gates, B.C., Stud. Surf. Sci. Catal., 2006, vol. 159, p. 209. https://doi.org/10.1016/S0167-2991(06)81570-3

    Article  CAS  Google Scholar 

  3. Llorca, J., Homs, N., Sales, J., and de la Piscina, P.R., Stud. Surf. Sci. Catal., 1998, vol. 119, p. 647. https://doi.org/10.1016/S0167-2991(98)80505-3

    Article  CAS  Google Scholar 

  4. Smith, M.W. and Shekhawat, D., Catalytic partial oxidation, in Fuel Cells: Technologies for Fuel Processing, 2011, ch. 5, p. 73. https://doi.org/10.1016/B978-0-444-53563-4.10005-7

    Book  Google Scholar 

  5. Deng, Q., Li, X., Gao, R., Jun Wang, J., Zeng, Z., Zou, J.-J., Deng, S., and Tsang, S.C., J. Am. Chem. Soc., 2021, vol. 143, no. 50, p. 21294. https://doi.org/10.1021/jacs.1c08259

    Article  CAS  PubMed  Google Scholar 

  6. Popov, A.A., Shubin, Yu.V., Bauman, Yu.I., Plyusnin, P.E., Mishakov, I.V., Sharafutdinov, M.R., Maksimovskiy, E.A., Korenev, S.V., and Vedyagin, A.A., Nanotechnology, 2020, vol. 31, no. 39, p. 495604. https://doi.org/10.1088/1361-6528/abb430

    Article  CAS  PubMed  Google Scholar 

  7. Melnikov, D., Stytsenko, V., Saveleva, E., Kotelev, M., Lyubimenko, V., Ivanov, E., Glotov, A., and Vinokurov, V., Catalists, 2020, vol. 10, no. 6, p. 624. https://doi.org/10.3390/catal10060624

    Article  CAS  Google Scholar 

  8. Mitsudome, T., Miyagawa, K., Maeno, Z., Mizugaki, T., Jitsukawa, K., Yamasaki, J., Kitagawa, Y., and Kaneda, K., Angew. Chem., Int. Ed., 2017, vol. 56, p. 9381. https://doi.org/10.1002/ange.201704199

    Article  CAS  Google Scholar 

  9. Li, K., An, H., Yan, P., Yang, C., Xiao, T., Wang, J., Zhou, S., ACS Omega, 2021, vol. 6, no. 8, p. 5846. https://doi.org/10.1021/acsomega.0c06268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fesik, E.V., Buslaeva, T.M., and Arkhipushkin, I.A., Zh. Obshch. Khim., 2020, vol. 90, no. 11, p. 1780. https://doi.org/10.31857/S0044460X20110207

    Article  Google Scholar 

  11. Rozanov, V.V. and Krylov, O.V., Usp. Khim., 1997, vol. 66, no. 2, p. 117. https://doi.org/10.1070/RC1997v066n02ABEH000308

    Article  Google Scholar 

  12. Shen, H., Li H., Yang, Z., and Li, C., Green Energy Environ., 2022, vol. 7, no. 6, p. 1161. https://doi.org/10.1016/j.gee.2022.01.013

  13. Dadayan, A.K., Borisov, Yu.A., Zolotarev, Yu.A., and Myasoedov, N.F., Zh. Fiz. Khim., 2021, vol. 95, no. 5, p. 743. https://doi.org/10.31857/S0044453721050095

    Article  Google Scholar 

  14. Xiong, M., Gao, Z., and Qin, Y., ACS Catal., 2021, vol. x11, no. 5, p. 3159. https://doi.org/10.1021/acscatal.0c05567

    Article  CAS  Google Scholar 

  15. Sihag, A., Xie, Z.-L., Thang, H.V., Kuo, C.-L., Tseng, F.-G., Dyer, M.S., and Chen, H.Y., J. Phys. Chem. C, 2019, vol. 123, no. 42, p. 25618. https://doi.org/10.1021/acs.jpcc.9b04419

    Article  CAS  Google Scholar 

  16. Chompoonut, R., Kajornsak, F., Noriaki, S., Nawee, K., and Supawadee, N., Int. J. Hydrogen Energy, 2018, vol. 43, no. 52, p. 23336. https://doi.org/10.1016/j.ijhydene.2018.10.211

    Article  CAS  Google Scholar 

  17. Subramani, M., Arumugam, D., and Ramasamy, S., Int. J. Hydrogen Energy, 2023, vol. 48, no. 10, p. 4016. https://doi.org/10.1016/j.ijhydene.2022.10.220

    Article  CAS  Google Scholar 

  18. Guo, J.-H., Li, X.-D., Cheng, X.-Lu., Liu, H.-Y., Li, S.-J., and Chen, G., Int. J. Hydrogen Energy, 2018, vol. 43, no. 41, p. 19121. https://doi.org/10.1016/j.ijhydene.2018.08.143

    Article  CAS  Google Scholar 

  19. Kostyukovich, A., Gordeev, E., and Ananikov, V., Mendeleev Commun., 2022, vol. 32, p. 571. https://doi.org/10.1016/j.mencom.2022.09.001

    Article  CAS  Google Scholar 

  20. Damte, J.Y., Zhu, Z.-J., Lin, P.-J., Yeh, C.-H., and Jiang, J.-C., J. Comput. Chem., 2019, vol. 41, no. 3, p. 194. https://doi.org/10.1002/jcc.26088

  21. Du, J., Sun, X., Chen, J., and Jiang, G., J. Phys. Chem. A, 2010, vol. 114, no. 49, p. 12825. https://doi.org/10.1021/jp107366z

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X., Xu, C., Zhang, Y., Cheng, C., Yang, Z., and Hermansson, K., Int. J. Hydrogen Energy, 2021, vol. 46, no. 12, p. 8477. https://doi.org/10.1016/j.ijhydene.2020.11.278

    Article  CAS  Google Scholar 

  23. Zavelev, D.E., Zhidomirov, G.M., and Tsodi-kov, M.V., Kinet. Catal., 2020, vol. 61, no. 1, p. 5. https://doi.org/10.31857/S0453881120010153

  24. Matsura, V.A., Panina, N.S., Potekhin, V.V., Ukraintsev, V.B., Khokhryakov, K.A., Platonov, V.A., Tatsenko, O.M., and Panin, A.I., Russ. J. Gen. Chem., 2004, vol. 74, p. 975. https://doi.org/10.1023/B:RUGC.0000045849.54881.4f

    Article  CAS  Google Scholar 

  25. Zavelev, D.E., Zhidomirov, G.M., and Tsodikov, M.V., Kinet. Katal., 2018, vol. 59, no. 4, p. 404. https://doi.org/10.1134/S0453881118040160

    Article  Google Scholar 

  26. Henkelman, G. and Jonsson, H.J., Chem. Phys., 2000, vol. 113, no. 22, p. 9901. https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  27. Asgeirsson, V., Birgisson, B.O., Bjornsson, R., Becker, U., Neese, F., Riplinger, C., and Jonsson, H., J. Chem. Theory Comput., 2021, vol. 17, no. 8, p. 4929. https://doi.org/10.1021/acs.jctc.1c00462

    Article  CAS  PubMed  Google Scholar 

  28. Neese, F., Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, vol. 2, no. 1, p. 73. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  29. Neese, F., Wennmohs, F., Becker, U., and Riplinger, C., J. Chem. Phys., 2020, vol. 152, no. 22, p. 224108. https://doi.org/10.1063/5.0004608

    Article  CAS  PubMed  Google Scholar 

  30. Neese, F. and Wennmohs, F., ORCA Manual, Version 5.0.1, Mülheim a. d. Ruhr, Germany: Max-Planck-Institut für Kohlenforschung, 2021, p. 775.

  31. Neese, F., Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022, vol. 12, no. 5, p. e1606. https://doi.org/10.1002/wcms.1606

    Article  Google Scholar 

  32. Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, p. 6158. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  33. Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297. https://doi.org/10.1039/B508541a

    Article  CAS  PubMed  Google Scholar 

  34. Schlegel, H.B., J. Comput. Chem., 1982, vol. 3, no. 2, p. 214. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  35. Lu, T. and Chen, F., J. Comput. Chem., 2012, vol. 33, no. 5, p. 580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  36. www.chemcraftprog.com.

  37. Corbel, G., Topic, M., Gibaud, A., and Lang, C.I., J. Alloys Compd., 2011, vol. 509, p. 6532.

    Article  CAS  Google Scholar 

  38. Waterstrat, R.M., Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1973, vol. 4, p. 455.

    Google Scholar 

  39. Maldonado, A. and Schubert, K., Zeitschrift fuer Metallkunde, 1964, vol. 55, p. 619.

    CAS  Google Scholar 

  40. Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, p. 1833. https://doi.org/10.1063/1.1740588

    Article  CAS  Google Scholar 

  41. Hirshfeld, F., Theor. Chim. Acta, 1977, vol. 44. https://doi.org/10.1007/BF00549096

  42. Luo, Y.R., Comprehensive Handbook of Chemical Bond Energies, Boca Raton, FL: CRC Press, 2007. https://doi.org/10.1201/9781420007282

    Book  Google Scholar 

  43. Greenwood, N. and Earnshaw, A., Chemistry of the Elements, Amsterdam: Elsevier, 1984.

    Google Scholar 

  44. https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F

  45. Pearson, R., Symmetry Rules for Chemical Reactions, New York: Wiley, 1976.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using computer resources provided by the High-Performance Computing Center of the St. Petersburg State Institute of Technology (Technical University).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Panina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: DFT is the density functional theory; NEB, nudged elastic band method; МЕР, minimum energy path; МО, molecular orbital; АО, atomic orbital; TS, transition state; min, minimum; q, charge; Еtotal, total electron energy; ZPE, zero point energy; au, atomic units of energy; HSPE, hydrogen spillover effect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, N.S., Buslaeva, T.M. & Fischer, A.I. Activation of H2 Molecules on Platinum and Platinum–Vanadium Clusters: DFT Quantum Chemical Modeling. Kinet Catal 64, 588–602 (2023). https://doi.org/10.1134/S0023158423050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050075

Keywords:

Navigation