Skip to main content
Log in

Effect of Nickel Promoted Niobium Catalyst on Toluene Nitration Reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A series of Ni–Nb2O5/SiO2 catalysts with varying Ni loadings (5–25 wt %) were prepared. The catalytic activity of the materials was evaluated by nitration of toluene. Ni–Nb2O5/SiO2 catalyst showed good catalytic activity, selectivity, and reusability for the nitration of toluene. Under the optimal conditions, conversion of toluene by 88% to mononitrotoluene was achieved with 100% selectivity. Experiments were designed by the Minitab software, and the effect of reaction conditions was investigated. The optimal reaction condition was also achieved for the high amount of total products and the lowest amount of meta-isomer using this software. The reusability of catalyst also was studied in this work at the same operating conditions, and the catalyst was stable for four runs without losing catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Patel, S.S., Patel, D.B., and Patel, H.D., ChemistrySelect, 2021, vol. 6, p. 1. https://doi.org/10.1002/slct.202004695

    Article  CAS  Google Scholar 

  2. Ma, X., Li, B., Lv, C., Lu, M., Wu, J., and Liang, L., Catal. Lett., 2011, vol. 141, p. 1814. https://doi.org/10.1007/s10562-011-0721-0

    Article  CAS  Google Scholar 

  3. Deng, R., You, K., Yi, L., Zhao, F., Jian, J., Chen, Z., Liu, P., Ai, Q., and Luo, H., Ind. Eng. Chem. Res., 2018, vol. 57, no. 39, p. 12993. https://doi.org/10.1021/acs.iecr.8b02786

    Article  CAS  Google Scholar 

  4. Parida, K.M. and Rath, D., J. Mol. Catal. A, 2006, vol. 258, p. 381. https://doi.org/10.1016/j.molcata.2006.07.039

    Article  CAS  Google Scholar 

  5. Sunaja Devi, K.R., and Jayashree, S., Bull. Chem. React. Eng. Catal., 2013, vol. 7, no. 3, p. 205. https://doi.org/10.9767/bcrec.7.3.4154.205-214

    Article  CAS  Google Scholar 

  6. Mao, W., Ma, H.Z., and Wang, B., J. Hazard. Mater., 2009, vol. 167, p. 707. https://doi.org/10.1016/j.jhazmat.2009.01.045

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, P., Li, Q., He, J., Li, D., and Li, Z., Russ. J. Phys. Chem., 2015, vol. 89, no. 11, p. 2097. https://doi.org/10.1134/S0036024415110254

    Article  CAS  Google Scholar 

  8. Hu, L.F., Tang, Y., He, J., Chen, K., and Lv, W., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 3, p. 511. https://doi.org/10.1134/S0036024417030177

    Article  CAS  Google Scholar 

  9. Koskin, A.P., Kenzhin, R.V., Vedyagin, A.A., and Mishakov, I.V., Catal. Commun., 2014, vol. 53, p. 83. https://doi.org/10.1016/j.catcom.2014.04.026

    Article  CAS  Google Scholar 

  10. You, K., Deng, R., Jian, J., Liu, P., Ai, Q., and Luo, H., RSC Adv., 2015, vol. 5, p. 73083, https://doi.org/10.1039/C5RA15679C

    Article  CAS  Google Scholar 

  11. Kuba, M.G., Prins, R., and Pirngruber, G.D., Appl. Catal. A: Gen., 2007, vol. 333, p. 78. https://doi.org/10.1016/j.apcata.2007.09.007

    Article  CAS  Google Scholar 

  12. Smith, K., Alotaibi, M.H., and El-Hiti, G.A., J. Catal., 2013, vol. 297, p. 244. https://doi.org/10.1016/j.jcat.2012.10.017

    Article  CAS  Google Scholar 

  13. Sreedhar, I., Reddy, K.S.K., and Raghavan, K.V., Kinet. Catal., 2009, vol. 50, no. 1, p. 131. https://doi.org/10.1134/S0023158409010170

    Article  CAS  Google Scholar 

  14. Kirkby, S.J., ISRN Phys. Chem., 2013, p. 1. https://doi.org/10.1155/2013/164868

  15. Adamiak, J., Kalinowska-Alichnewicz, D., Maksimowski, P., and Skupinski, W., J. Mol. Catal. A. Chem., 2011, vol. 351, p. 62. https://doi.org/10.1016/j.molcata.2011.09.015

    Article  CAS  Google Scholar 

  16. Khder, A.S. and Ahmed, A.I., Appl. Catal. A: Gen., 2009, vol. 354, p. 153. https://doi.org/10.1016/j.apcata.2008.11.030

    Article  CAS  Google Scholar 

  17. Gong, S., Liu, L., Zhang, J., and Cui, Q., Proc. Saf. Environ., 2014, vol. 92, p. 577. https://doi.org/10.1016/j.psep.2013.03.005

    Article  CAS  Google Scholar 

  18. Adamiak, J., Tomaszewski, W., and Skupinski, W., Catal. Commun., 2012 vol. 29, p. 92. https://doi.org/10.1016/j.catcom.2012.09.026

    Article  CAS  Google Scholar 

  19. Kalbasi, R.J., Ghiaci, M., and Massah, A.R., Appl. Catal. A: Gen., 2009, vol. 353, p. 1. https://doi.org/10.1016/j.apcata.2008.10.013

    Article  CAS  Google Scholar 

  20. Kogelbauer, A., Vassena, D., and Prins, R., Armor, J.N., Catal. Today, 2000, vol. 55, p. 151. https://doi.org/10.1016/S0920-5861(99)00234-5

    Article  CAS  Google Scholar 

  21. Brei, V.V., Prudius, S.V., and Melezhyk, O.V., Appl. Catal. A: Gen., 2003, vol. 239, p. 11. https://doi.org/10.1016/S0926-860X(02)00383-6

    Article  CAS  Google Scholar 

  22. Chaubal, N.S. and Sawant, M.R., Catal. Commun., 2007, vol. 8, p. 845. https://doi.org/10.1016/j.catcom.2006.08.031

    Article  CAS  Google Scholar 

  23. Mallick, S. and Parida, K.M., Catal. Commun., 2007., vol. 8, p. 1487. https://doi.org/10.1016/j.catcom.2006.12.023

    Article  CAS  Google Scholar 

  24. Kulal, A.B., Dongare, M.K., and Umbarkar, S.B., Appl. Catal. B: Environ., 2016, vol. 182, p. 142. https://doi.org/10.1016/j.apcatb.2015.09.020

    Article  CAS  Google Scholar 

  25. Mane, V., Lalaso, M., Waghmode, S., Jadhav, K.D., Dongare, M.K., and Dagade, S.P., IOSR J. Appl. Chem. (IOSR-JAC), 2014, vol. 7, p. 51. https://doi.org/10.9790/5736-07725057

    Article  Google Scholar 

  26. Zhou, S., You, K.,Gao, H., Deng, R., Zhao, F., Liu, P., Ai, Q., and Luo, H.A., Mol. Catal., 2017, vol. 433, p. 91. https://doi.org/10.1016/j.mcat.2016.12.001

    Article  CAS  Google Scholar 

  27. Kuznetsova, T.G., Ione, K.G., and Malysheva, L.V., React. Kinet. Catal. Lett., 1998, vol. 63, no. 1, p. 61. https://doi.org/10.1007/BF02475431

    Article  CAS  Google Scholar 

  28. Tanabe, K., Catal. Today, 2003, vol. 78, p. 65. https://doi.org/10.1016/S0920-5861(02)00343-7

    Article  CAS  Google Scholar 

  29. Griffin, J., Taw, E., Gosavi, A., Thornburg, N.E., Pramanda, I., Lee, H.S., Gray, K.A., Notestein, J.M., and Wells, G., ACS Sustainable Chem. Eng., 2018, vol. 6, p. 7880. https://doi.org/10.1021/acssuschemeng.7b04641

    Article  CAS  Google Scholar 

  30. Chan, X., Pu, T., Chen, X., James, A., Lee, J., Parise, J.B., Kim, D.H., and Kim, T., Catal. Commun., 2017, vol. 97, p. 65. https://doi.org/10.1016/j.catcom.2017.04.019

    Article  CAS  Google Scholar 

  31. He, J., Li, Q.J., Tang, Y., Yang, P., Li, A., Li, R., and Li, H.Z., Appl. Catal. A: Gen., 2012, vol. 443–444, p. 145. https://doi.org/10.1016/j.apcata.2012.07.036

    Article  CAS  Google Scholar 

  32. Raba, A.M., Bautista-Ruíz, J., and Joya, M.R., Mater. Res., 2016, vol. 19, no. 6, p. 1381. https://doi.org/10.1590/1980-5373-MR-2015-0733

    Article  CAS  Google Scholar 

  33. Brandão, R.F., Quirino, R.L., Mello, V.M., Tavares, A.P., Peres, A.C., and Guinhos, F., J. Braz. Chem. Soc., 2009, vol. 20, p. 954. https://doi.org/10.1590/S0103-50532009000500022

    Article  Google Scholar 

  34. Jehng, J.M. and Wachs, I.E., Catal. Today, 1993, vol. 16, nos. 3–4, p. 417. https://doi.org/10.1016/0920-5861(93)80081-B

    Article  CAS  Google Scholar 

  35. Mal, N.K., Bhaumik, A., Fujiwara, M., and Matsukata, M., Micropor. Mesopor. Mater., 2006, vol. 93, nos. 1–3, p. 40. https://doi.org/10.1016/j.micromeso.2006.02.001

    Article  CAS  Google Scholar 

  36. Leal, G.F., Barrett, D.H., Carrer, H., Figueroa, S.J.A., Teixeira-Neto, E., Curvelo, A.A.S., and Rodella, C.B., J. Phys. Chem. C, 2019, vol. 123, p. 3130. https://doi.org/10.1021/acs.jpcc.8b09177

    Article  CAS  Google Scholar 

  37. Sahebi, M., Nasiri, M., and Shokrollahi, A., Iran. J. Chem. Chem. Eng., 2022, vol. 41, no. 5 (in press). https://doi.org/10.30492/ijcce.2022.539174.4938

  38. Hariri, M., Ghani, K., and Damiri, S., J. Iran. Chem. Soc., 2019, vol. 16, no. 11, p. 2401. https://doi.org/10.1007/s13738-019-01709-z

    Article  CAS  Google Scholar 

  39. de Sousa Lima, L.F., Coelho, C.R., Gomes, G.H.M., and Mohallem, N.D.S., J. Sol-Gel Sci. Technol., 2020, vol. 93, p. 168. https://doi.org/10.1007/s10971-019-05146-5

    Article  CAS  Google Scholar 

  40. Shen, K., Liu, X., Lu, G., Miao, Y., Guo, Y., Wang, Y., and Guo, Y., J. Mol. Catal. A: Chem., 2013, vol. 373, p. 78. https://doi.org/10.1016/j.molcata.2013.02.020

    Article  CAS  Google Scholar 

  41. Aronne, E., Marenna, A., Califano, V., Fanelli, E., Pernice, P., Trifuoggi, M., and Vergara, A., J. Sol-Gel Sci. Technol., 2007, vol. 43, p. 193. https://doi.org/10.1007/s10971-007-1563-5

    Article  CAS  Google Scholar 

  42. Vosoughifar, M., J. Mater. Sci. Mater Electron., 2017, vol. 28, no. 1, p. 532. https://doi.org/10.1007/s10854-016-5555-5

    Article  CAS  Google Scholar 

  43. Pilarek, B., Pelczarska, A.J., and Szczygieł, I., J. Therm. Anal. Calorim., 2017, vol. 130, p. 77. https://doi.org/10.1007/s10973-017-6300-x

    Article  CAS  Google Scholar 

  44. Jeeru, L.R., Reddy, R.V.S., Pradhan, S., Kundu, G., and Pradhan, N.C., Asia-Pac. J. Chem. Eng., 2018, vol. 13, no. 1. https://doi.org/10.1002/apj.2158

  45. Koskin, A.P., Mishakov, I.V., and Vedyagin, A.A., Resource-Efficient Technol., 2016, vol. 2, pp. 118-125, https://doi.org/10.1016/j.reffit.2016.07.004

    Article  Google Scholar 

  46. Yuan, Y., Nie, J., Zhang, Z., and Wang, S., Appl. Catal. A: Gen., 2005, vol. 295, no. 2, p.170. https://doi.org/10.1016/j.apcata.2005.08.014

    Article  CAS  Google Scholar 

  47. Parac-Vogt, T.N. and Binnemans, K., Tetrahedron Lett., 2004, vol. 45, p. 3137. https://doi.org/10.1016/j.tetlet.2004.02.084

    Article  CAS  Google Scholar 

  48. Choudary, B.M., Sateesh, M., Lakshmi Kantam, M., Koteswara Rao, K., Ram Prasad, K.V., Raghavan, K.V., and Sarma, J.A.R.P., Chem. Commun., 2000, p. 25. https://doi.org/10.1039/A908011B

  49. Jiao, Y., Zhu, M., Deng, R., Jian, J., Yin, Y., and You, K., Res. Chem. Intermed., 2017, vol. 43, p. 3961. https://doi.org/10.1007/s11164-016-2856-5

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge financial support from the University of Malek Ashtar for providing the facilities to perform the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nasiri.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: ANBO, ammonium niobate(V) oxalate hydrate; TEOS, tetraethyl orthosilicate; Py, pyridine; ONT, ortho-nitrotoluene; PNT, para-nitrotoluene; MNT, meta-nitrotoluene; GC, gas chromatography; ECD, electron capture detector; XRD, powder X-ray diffraction; FT-IR, Fourier transform infrared spectroscopy; SEM, scanning electron microscopy; EDS, energy-dispersive X-ray spectroscopy; RSM, response surface methodology; CCD, central composite design; A/T, nitric acid/toluene molar ratio; ANOVA, analysis of variance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahebi, M., Nasiri, M. & Shokrollahi, A. Effect of Nickel Promoted Niobium Catalyst on Toluene Nitration Reaction. Kinet Catal 64, 635–644 (2023). https://doi.org/10.1134/S0023158423050105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050105

Keywords:

Navigation