Skip to main content
Log in

Synergistic Effect of the Catalytic Action of Copper and Cerium in the Oxidation of Carbon Monoxide on Modified Cu/Ce/ZSM-5 Zeolites

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A series of mono- and bimetallic copper–cerium catalysts based on ZSM-5 zeolite with different aluminum content (SiO2/Al2O3 = 30 and 55) was synthesized by incipient wetness impregnation. The copper content was 0–4.3 wt %, and cerium loading varied in a range from 0 to 6 wt %. The resulting composites were studied by low-temperature nitrogen adsorption–desorption, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy, UV–Vis diffuse reflectance spectroscopy, and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy of adsorbed CO and tested in the catalytic reaction of CO oxidation with oxygen. A pronounced synergistic effect of catalytic action of copper and cerium associated with the redox interaction between the metals was observed in the systems under study. The catalytic activity of the composites monotonically increased with the fraction of cerium in the bimetallic systems (as the Сu : Ce ratio was changed from 6 to 1). In the presence of the most active catalysts, the temperature at which CO conversion reached 50% was about 100°C. A decrease in the aluminum content of the zeolite contributed to higher catalytic activity. It was found that Cu+ ions bound to the surface of CeO2 particles played a key role in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Hussain, I., Jalil, A.A., Hamid, M.Y.S., and Hassan, N.S., Chemosphere, 2021, vol. 277, p. 130285.

    Article  CAS  PubMed  Google Scholar 

  2. Dey, S. and Dhal, G., Mater. Sci. Energy Technol., 2020, vol. 3, p. 6.

    CAS  Google Scholar 

  3. Freund, H.J., Meijer, G., Scheffler, M., Schlogl, R., and Wolf, M., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, no. 43, p. 10064.

    Article  CAS  PubMed  Google Scholar 

  4. Nikolaev, S.A., Golubina, E.V., and Shilina, M.I., Appl. Catal. B: Environ., 2017, vol. 208, p. 116.

    Article  CAS  Google Scholar 

  5. Liu, X., Wang, A., Wang, X., Mou, C.Y., and Zhang, T., Chem. Commun., 2008, no. 27, p. 3187.

  6. Zhang, Y., Cattrall, R.W., McKelvie, I.D., and Kolev, S.D., Gold Bull., 2011, vol. 44, no. 3, p. 145.

    Article  CAS  Google Scholar 

  7. Rostovshchikova, T.N., Nikolaev, S.A., Krotova, I.N., Maslakov, K.I., Udalova, O.V., Gurevich, S.A., Yavsin, D.A., and Shilina, M.I., Izv. Akad. Nauk, Ser. Khim., 2022, no. 6, p. 1179.

  8. Mukri, B.D., Kinet. Katal., 2021, vol. 62, no. 6.

  9. Royer, S. and Duprez, D., ChemCatChem, 2011, vol. 3, no. 1, p. 24.

    Article  CAS  Google Scholar 

  10. Cui, X., Liu, J., Yan, X., Yang, Y., and Xiong, B., Appl. Surf. Sci., 2021, vol. 570, p. 151234.

    Article  CAS  Google Scholar 

  11. Kang, M., Song, M.W., and Lee, C.H., Appl. Catal. A: Gen., 2003, vol. 251, no. 1, p. 143.

    Article  CAS  Google Scholar 

  12. Cam, T.S., Omarov, S.O., Chebanenko, M.I., Sklyarova, A.S., Nevedomskiy, V.N., and Popkov, V.I., J. Environ. Chem. Eng., 2021, vol. 9, no. 4, p. 105373.

    Article  CAS  Google Scholar 

  13. Gao, Y., Zhang, Z., Li, Z., and Huang, W., Chin. J. Catal., 2020, vol. 41, no. 6, p. 1006.

    Article  CAS  Google Scholar 

  14. Liu, Y., Mao, D., Yu, J., Zheng, Y., and Guo, X., Catal. Sci. Technol., 2020, vol. 10, no. 24, p. 8383.

    Article  CAS  Google Scholar 

  15. Shang, H., Zhang, X., Xu, J., and Han, Y., Front. Chem. Sci. Eng., 2017, vol. 11, no. 4, p. 603.

    Article  CAS  Google Scholar 

  16. Li, P., Chen, X., Li, Y., and Schwank, J., Catal. Today, 2019, vol. 327, p. 90.

    Article  CAS  Google Scholar 

  17. Lykaki, M., Pachatouridou, E., Carabineiro, S.A.C., Iliopoulou, E., Andriopoulou, C., Kallithrakas-Kontos, N., Boghosian, S., and Konsolakis, M., Appl. Catal. B: Environ., 2018, vol. 230, p. 18.

    Article  CAS  Google Scholar 

  18. Chen, Y., Liu, Y., Mao, D., Yu, J., Zheng, Y., Guo, X., and Ma, Z., J. Taiw. Inst. Chem. Eng., 2020, vol. 113, p. 16.

    Article  CAS  Google Scholar 

  19. Shilina, M., Rostovshchikova, T., Nikolaev, S., and Udalova, O., Mat. Chem. Phys., 2019, vol. 223, p. 287.

    Article  CAS  Google Scholar 

  20. Shilina, M., Udalova, O., Krotova, I., Ivanin, I., and Boichenko, A., ChemCatChem, 2020, vol. 12, p. 2556.

    Article  CAS  Google Scholar 

  21. Ivanin I.A., Krotova I.N., Udalova O.V., Zanaveskin K.L., and Shilina M.I., Kinet. Catal., 2021, vol. 62, no. 6, p. 798.

    Article  CAS  Google Scholar 

  22. Yashnik, S.A., Boltenkov, V.V., Babushkin, D.E., Surovtsova, T.A., and Parmon, V.N., Kinet. Katal., 2022, vol. 63, no. 5, p. 628.

    Article  Google Scholar 

  23. Bin, F., Wei, X., Li, B., and Hui, K., Appl. Catal. B: Environ., 2015, vol. 162, p. 282.

    Article  CAS  Google Scholar 

  24. Pang, L., Fan, C., Shao, L., Song, K., Yi, J., Cai, X., Wang, J., Kang, M., and Li, T., Chem. Eng. J., 2014, vol. 253, p. 394.

    Article  CAS  Google Scholar 

  25. Dedecek, J. and Wichterlowa, B., J. Phys. Chem. B, vol. 101, p. 10233.

  26. Zecchina, A., Bordiga, S., Turnes Palomino, G., Scarano, D., and Lamberti, C., J. Phys. Chem. B, 1999, vol. 103, p. 3833.

    Article  CAS  Google Scholar 

  27. Palomino, G., Fisicaro, P., Bordiga, S., Zecchina, A., Giamello, E., and Lamberti, C., J. Phys. Chem. B, vol. 104, p. 4064.

  28. Yashnik, S.A., Ismagilov, Z.R., and Anufrienko, V.F., Catal. Today, 2005, vol. 110, p. 310.

    Article  CAS  Google Scholar 

  29. Ikuno, T., Grundner, S., Jentys, A., Li, G., Pidko, E., Fulton, J., Sanchez-Sanchez, M., and Lercher, J.A., J. Phys. Chem., vol. 123, p. 8759.

  30. Xamena, F.X., Fisicaro, P., Berlier, G., Zecchina, A., Turnes Palomino, G., Prestipino, C., Bordiga, S., Giamello, E., Lamberti, C., J. Phys. Chem. B, 2003, vol. 107, p. 7036.

    Article  CAS  Google Scholar 

  31. Markovits, M., Jentys, A., Tromp, M., Sanchez-Sanchez, M., and Lercher, J., Top. Catal., 2016, vol. 59, p. 1554.

    Article  CAS  Google Scholar 

  32. Georgiev, P.A., Drenchev, N., Hadjiivanov, K.I., Ollivier, J., Unruh, T., and Albinati, A., Int. J. Hydrogen Energy, 2021, vol. 46, p. 26897.

    Article  CAS  Google Scholar 

  33. Adeyiga, O., Panthi, D., and Odoh, S.O., Catal. Sci. Technol., 2021, vol. 11, p. 5671.

    Article  CAS  Google Scholar 

  34. Zhu, Z., Lu, G., Zhang, Z., Guo, Y., Guo, Y., and Wang, Y., ACS Catal., 2013, vol. 3, no. 6, p. 1154.

    Article  CAS  Google Scholar 

  35. Wang, T., Liu, H., Zhang, X., Guo, Y., Zhang, Y., Wang, Y., and Sun, B., Fuel Process. Technol., 2017, vol. 158, p. 199.

    Article  CAS  Google Scholar 

  36. Teterin, Y.A., Teterin, A.Y., Lebedev, A.M., and Utkin, I.O., J. Electron Spectrosc. Relat. Phenom., 1998, vol. 88, p. 275.

    Article  Google Scholar 

  37. Bêche, E., Charvin, P., Perarnau, D., Abanades, S., and Flamant, G., Surf. Interface Anal., 2008, vol. 40, nos. 3–4, p. 264.

    Article  Google Scholar 

  38. Boehm, H.-P. and Knözinger, H., Nature and estimation of functional groups on solid surfaces, Catalysis: Science and Technology, Anderson, J.R., Boudart, M., Eds., Berlin: Springer, 1983.

    Google Scholar 

  39. Stevie, F.A. and Donley, C.L., J. Vac. Sci. Technol. A, 2020, vol. 38, p. 063204.

    Article  CAS  Google Scholar 

  40. Biesinger, M.C., Lau, L.W., Gerson, A.R., and Smart, R.S.C., Appl. Surf. Sci., 2010, vol. 257, no. 3, p. 887.

    Article  CAS  Google Scholar 

  41. Chikunov, A., Yashnik, S., Taran, O., Kurenkova, A., and Parmon, V., Catal. Today, 2021, vol. 375, p. 458.

    Article  CAS  Google Scholar 

  42. Gabrienko, A., Yashnik, S., Kolganov, A., Sheveleva, A., Arzumanov, S., Fedin, M., Tuna, F., and Stepanov, A., Inorg. Chem., 2020, vol. 59, no. 3, p. 2037.

    Article  CAS  PubMed  Google Scholar 

  43. Araujo, V.D., Bellido, J.D.A., Bernardi, M.I.B., Assaf, J.M., and Assaf, E.M., Int. J. Hydrogen Energy, 2012, vol. 37, no. 7, p. 5498.

    Article  CAS  Google Scholar 

  44. Zhang, Y., Xue, M., Zhou, Y., Zhang, H., Wang, W., Wang, Q., and Sheng, X., RSC Adv., 2016, vol. 6, p. 29410.

    Article  CAS  Google Scholar 

  45. Hadjiivanov, K. and Knozinger, H., J. Catal., 2000, vol. 191, no. 2, p. 480.

    Article  CAS  Google Scholar 

  46. Hadjiivanov, K. and Vayssilov, G., Adv. Catal., 2002, vol. 47, p. 307.

    CAS  Google Scholar 

  47. Shilina, M.I., Udalova, O.V., and Nevskaya, S.M., Kinet. Katal., 2013, vol. 54, no. 6, p. 731.

    Article  Google Scholar 

  48. Hadjiivanov, K.I., Kantcheva, M.M., and Klissurski, D.G., J. Chem. Soc. Faraday Trans., 1996, vol. 92, no. 22, p. 4595.

    Article  CAS  Google Scholar 

  49. Hadjiivanov, K., Knozinger, H., and Milushev, A., Catal. Commun., 2002, vol. 3, p. 37.

    Article  CAS  Google Scholar 

  50. Davydov, A., Molecular Spectroscopy of Oxide Catalyst Surfaces, Sheppard, N.T., Ed., Hoboken, NJ: Wiley, 2003.

    Book  Google Scholar 

  51. Kim, C.W., Kang, H.C., Heo, N.H., and Seff, K., J. Phys. Chem. C, 2015, vol. 119, no. 43, p. 24501.

    Article  CAS  Google Scholar 

  52. Zhang, D., Zhang, H., and Yan, Y., Korean J. Chem. Eng., 2016, vol. 33, no. 6, p. 1846.

    Article  CAS  Google Scholar 

  53. Hazlett, M.J., Mases-Debusk, M., Parks, IIJ.E., and Allard, L.F., Appl. Catal. B: Environ., 2017, vol. 202, p. 404.

    Article  CAS  Google Scholar 

  54. Rostovshchikova, T.N., Nikolaev, S.A., Krotova, I.N., Maslakov, K.I., Udalova, O.V., Gurevich, S.A., Yavsin, D.A., and Shilina, M.I., Izv. Akad. Nauk, Ser. Khim., 2022, no. 6, p. 1179.

  55. Boronin, A.I., Slavinskaya, E.M., Figueroba, A., Stadnichenko, A.I., Kardash, T.Yu., Stonkus, O.A., Fedorova, E.A., Muravev, V.V., Svetlichnyi, V.A., Bruix, A., and Neyman, K.M., Appl. Catal. B: Environ., 2021, vol. 286, p. 119931.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.V. Dvoryak and K.I. Maslakov for conducting XPS analysis and low-temperature nitrogen adsorption studies. The authors are grateful to N.A. Chumakova for her assistance in conducting EPR spectroscopic studies.

Funding

This work was carried out within the framework of state contracts of Moscow State University (project no. АААА-А21-121011590090-7) and Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences (project no. 122040500058-1, Physics and Chemistry of New Nanostructured Systems and Composite Materials with Desired Properties). The studies of physicochemical properties were supported by the Moscow State University Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Ivanin or M. I. Shilina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: XPS, X-ray photoelectron spectroscopy; EPR, electron paramagnetic resonance; DRS, diffuse reflectance spectroscopy; DRIFT, diffuse reflectance infrared Fourier transform; IRS, infrared spectroscopy; AAS, atomic absorption spectroscopy; BET, Brunauer–Emmett–Taylor method; T50, temperature at which CO conversion reached 50%; CTB, charge transfer band.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanin, I.A., Kruchinin, T.V., Udalova, O.V. et al. Synergistic Effect of the Catalytic Action of Copper and Cerium in the Oxidation of Carbon Monoxide on Modified Cu/Ce/ZSM-5 Zeolites. Kinet Catal 64, 655–670 (2023). https://doi.org/10.1134/S002315842305004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842305004X

Keywords:

Navigation