Skip to main content
Log in

Nickel-Based Ni–Ce1–xZrxO2 Catalysts Prepared by the Pechini Method for CO2 Methanation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Nickel-based Ni–Ce1 – xZrxO2 catalysts were prepared by the Pechini method. The catalyst performance in the CO2 methanation reaction was studied. The catalysts exhibit high catalytic activity comparable to that of the commercial NIAP-07-05 catalyst of methanation. The catalysts were characterized by X‑ray diffraction methods with experiments using synchrotron radiation, and also by high-resolution electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The method for the preparation makes it possible to obtain fine nickel-containing particles formed during the decomposition of the Ni–Ce–Zr–O substitution solid solution obtained during the synthesis. Because of the decorating effect, however, the surface of nickel-containing particles is poorly accessible to reagents. For this reason, the Ni–Ce1 – xZrxO2 catalysts obtained by the Pechini method are less active than supported Ni/Ce1 – xZrxO2 catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bailera, M., Lisbona, P., Romeo, L.M., and Espatolero, S., Renewable Sustainable Energy Rev., 2017, vol. 69, p. 292.

    Article  CAS  Google Scholar 

  2. Rönsch, S., Schneider, J., Matthischke, S., Schlüter, M., Götz, M., Lefebvre, J., Prabhakaran, P., and Bajohr, S., Fuel, 2016, vol. 166, p. 276.

    Article  Google Scholar 

  3. Hidalgo, D. and Martín-Marroquín, J.M., Renewable Sustainable Energy Rev., 2020, vol. 132, p. 110057.

    Article  CAS  Google Scholar 

  4. Wang, W., Wang, S., Ma, X., and Gong, J., Chem. Soc. Rev., 2011, vol. 40, no. 7, p. 3703.

    Article  CAS  PubMed  Google Scholar 

  5. Ashok, J., Pati, S., Hongmanorom, P., Tianxi, Z., Junmei, C., and Kawi, S., Catal. Today, 2020, vol. 356, p. 471.

    Article  CAS  Google Scholar 

  6. Fan, W.K. and Tahir, M., J. Environ. Chem. Eng., 2021, vol. 9, no. 4, p. 105460.

    Article  CAS  Google Scholar 

  7. Lee, W.J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y., and Lim, S., Catal. Today, 2021, vol. 368, p. 2.

    Article  CAS  Google Scholar 

  8. Li, Z., Bian, L., Zhu, Q., and Wang, W., Kinet. Catal., 2014, vol. 55, no. 2, p. 217

    Article  CAS  Google Scholar 

  9. Le, T.A., Kim, M.S., Lee, S.H., Kim, T.W., and Park, E.D., Catal. Today, 2017, vols. 293–294, p. 89.

    Article  Google Scholar 

  10. Tada, S., Shimizu, T., Kameyama, H., Haneda, T., and Kikuchi, R., Int. J. Hydrogen Energy, 2012, vol. 37, no. 7, p. 5527.

    Article  CAS  Google Scholar 

  11. Nematollahi, B., Rezaei, M., and Lay, E.N., J. Rare Earths, 2015, vol. 33, no. 6, p. 619.

    Article  CAS  Google Scholar 

  12. Konishcheva, M.V., Potemkin, D.I., Badmaev, S.D., Snytnikov, P.V., Paukshtis, E.A., Sobyanin, V.A., and Parmon, V.N., Top. Catal., 2016, vol. 59, nos. 15–16, p. 1424.

    Article  CAS  Google Scholar 

  13. Konishcheva, M.V., Potemkin, D.I., Snytnikov, P.V., and Sobyanin, V.A., Int. J. Hydrogen Energy, 2019, vol. 44, no. 20, p. 9978.

    Article  CAS  Google Scholar 

  14. Li, Z., Li, B., Li, Z., and Rong, X., Kinet. Catal., 2015, vol. 56, no. 3, p. 329.

    Article  CAS  Google Scholar 

  15. Pan, Q., Peng, J., Sun, T., Gao, D., Wang, S., and Wang, S., Fuel Process. Technol., 2014, vol. 123, p. 166.

    Article  CAS  Google Scholar 

  16. Pakharukova, V.P., Potemkin, D.I., Stonkus, O.A., Kharchenko, N.A., Saraev, A.A., and Gorlova, A.M., J. Phys. Chem., vol. 125, no. 37, p. 20538.

  17. Martin, N.M., Velin, P., Skoglundh, M., Bauer, M., and Carlsson, P.-A., Catal. Sci. Technol., 2017, vol. 7, no. 5, p. 1086.

    Article  CAS  Google Scholar 

  18. Rombi, E., Cutrufello, M.G., Atzori, L., Monaci, R., Ardu, A., Gazzoli, D., Deiana, P., and Ferino, I., Appl. Catal. A: Gen., 2016, vol. 515, p. 144.

    Article  CAS  Google Scholar 

  19. Znak, L., Stolecki, K., and Zielinski, J., Catal. Today, 2005, vol. 101, no. 2, p. 65.

    Article  CAS  Google Scholar 

  20. Ashok, J., Ang, M.L., and Kawi, S., Catal. Today, 2017, vol. 281, p. 304.

    Article  CAS  Google Scholar 

  21. Atzori, L., Cutrufello, M.G., Meloni, D., Onida, B., Gazzoli, D., Ardu, A., Monaci, R., Sini, M.F., and Rombi, E., Front. Chem. Sci. Eng., 2021, vol. 15, no. 2, p. 251.

    Article  Google Scholar 

  22. Nematollahi, B., Rezaei, M., and Lay, E.N., Int. J. Hydrogen Energy, 2015, vol. 40, no. 27, p. 8539.

    Article  CAS  Google Scholar 

  23. Shan, W., Appl. Catal. A: Gen., 2003, vol. 24, no. 1, p. 1.

    Article  Google Scholar 

  24. Aberkane, A., Yeste, M.P., Djazi, F., and Cauqui, M.A., Nanomaterials, 2022, vol. 12, no. 15, p. 2627.

    Article  Google Scholar 

  25. Nie, W., Zou, X., Chen, C., Wang, X., Ding, W., and Lu, X., Catalysts, 2017, vol. 7, no. 12, p. 104.

    Article  Google Scholar 

  26. Pakharukova, V.P., Stonkus, O.A., Kharchenko, N.A., Rogozhnikov, V.N., Gorlova, A.M., and Potemkin, D.I., J. Struct. Chem., 2022, vol. 63, no. 9, p. 1424.

    Article  CAS  Google Scholar 

  27. Pakharukova, V.P., Potemkin, D.I., Rogozhnikov, V.N., Stonkus, O.A., Gorlova, A.M., Nikitina, N.A., Suprun, E.A., Brayko, A.S., et al., Nanomaterials, 2022, vol. 12, no. 18, p. 3207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shmakov, A.N., Mytnichenko, S.V., Tsybulya, S.V., Solovyeva, L.P., and Tolochko, B.P., J. Struct. Chem., 1994, vol. 35, no. 2, p. 224.

    Article  Google Scholar 

  29. Piminov, P.A., Baranov, G.N., Bogomyagkov, A.V., Berkaev, D.E., Borin, V.M., Dorokhov, V.L., Karnaev, S.E., Kiselev, V.A., Levichev, E.B., Meshkov, O.I., Mishnev, S.I., Nikitin, S.A., Nikolaev, I.B., Sinyatkin, S.V., Vobly, P.D., Zolotarev, K.V., and Zhuravlev, A.N., Phys. Procedia, 2016, vol. 84, p. 19.

    Article  CAS  Google Scholar 

  30. Qiu, X., Thompson, J.W., and Billinge, S.J.L., J. Appl. Crystallogr., 2004, vol. 37, no. 4, p. 678.

    Article  CAS  Google Scholar 

  31. Egami, T. and Billinge, S.J.L., Underneath the Bragg Peaks: Structural Analysis of Complex Materials, New York: Pergamon, 2012.

    Google Scholar 

  32. Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Bozin, E.S., Bloch, J., Proffen, T., and Billinge, S.J.L., J. Phys. Condens. Matter, 2007, vol. 19, no. 33, p. 335219.

    Article  CAS  PubMed  Google Scholar 

  33. Inorganic Crystal Structure Database (ICSD-for-WWW), Karlsruhe, Germany: Fachinformationszentrum (FIZ), 2007.

  34. Scofield, J.H., J. Electron Spectros. Relat. Phenomena, 1976, vol. 8, no. 2, p. 129.

    Article  CAS  Google Scholar 

  35. Fairley, N., www.casaxps.com.

  36. Hernández-Alonso, M.D., Belén Hungría, A., Martínez-Arias, A., Coronado, J.M., Carlos Conesa, J., Soria, J., and Fernández-García, M., Phys. Chem. Chem. Phys., 2004, vol. 6, no. 13, p. 3524.

    Article  Google Scholar 

  37. McBride, J.R., Hass, K.C., Poindexter, B.D., and Weber, W.H., J. Appl. Phys., 1994, vol. 76, no. 4, p. 2435.

    Article  CAS  Google Scholar 

  38. Lin, S., Hao, Z., Shen, J., Chang, X., Huang, S., Li, M., and Ma, X., J. Energy Chem., 2021, vol. 59, p. 334.

    Article  CAS  Google Scholar 

  39. Zou, W., Ge, C., Lu, M., Wu, S., Wang, Y., Sun, J., Pu, Y., Tang, C., Gao, F., and Dong, L., RSC Adv., 2015, vol. 5, no. 119, p. 98335.

    Article  CAS  Google Scholar 

  40. Alders, D., Voogt, F.C., Hibma, T., and Sawatzky, G.A., Phys. Rev., vol. 54, no. 11, p. 7716.

  41. Van Veenendaal, M.A. and Sawatzky, G.A., Phys. Rev. Lett., 1993, vol. 70, no. 16, p. 2459.

    Article  CAS  Google Scholar 

  42. Carley, A.F., Jackson, S.D., O’Shea, J.N., and Roberts, M.W., Surf. Sci., 1999, vol. 440, no. 3, p. L868.

    Article  CAS  Google Scholar 

  43. Kaichev, V.V., Teschner, D., Saraev, A.A., Kosolobov, S.S., Gladky, A.Y., Prosvirin, I.P., Rudina, N.A., Ayupov, A.B., Blume, R., Havecker, M., Knop-Gericke, A., Schlögl, R., Latyshev, A.V., and Bukhtiyarov, V.I., J. Catal., 2016, vol. 334, p. 23.

    Article  CAS  Google Scholar 

  44. Lorenz, P., Finster, J., Wendt, G., Salyn, J.V., Žumadilov, E.K., and Nefedov, V.I., J. Electron Spectros. Relat. Phenomena, 1979, vol. 16, no. 3, p. 267.

    Article  CAS  Google Scholar 

  45. Bulavchenko, O.A., Vinokurov, Z.S., Afonasenko, T.N., Tsyrul’nikov, P.G., Tsybulya, S.V., Saraev, A.A., and Kaichev, V.V., Dalton Trans., 2015, vol. 44, no. 35, p. 15499.

    Article  CAS  PubMed  Google Scholar 

  46. Tsunekawa, S., Asami, K., Ito, S., Yashima, M., and Sugimoto, T., Appl. Surf. Sci., 2005, vol. 252, no. 5, p. 1651.

    Article  CAS  Google Scholar 

  47. Jeon, T.S., White, J.M., and Kwong, D.L., Appl. Phys. Lett., 2001, vol. 78, no. 3, p. 368.

    Article  CAS  Google Scholar 

  48. Borchert, H., Frolova, Y.V., Kaichev, V.V., Prosvirin, I.P., Alikina, G.M., Lukashevich, A.I., Zaikovskii, V.I., Moroz, E.M., Trukhan, S.N., Ivanov, V.P., Paukshtis, E.A., Bukhtiyarov, V.I., and Sadykov, V.A., J. Phys. Chem. B, vol. 109, no. 12, p. 5728.

  49. Christou, S.Y., Alvarez-Galvan, M.C., Fierro, J.L.G., and Efstathiou, A.M., Appl. Catal. B: Environ., 2011, vol. 106, nos. 1–2, p. 103.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The electron microscopy and X-ray photoelectron spectroscopy studies were performed using the equipment of the Multiaccess Center “National Center for the Study of Catalysts.”

We also used the equipment of the Siberian Synchrotron and Terahertz Radiation Center (SSTRC) based on the “VEPP-4–VEPP-2000 Complex” unit at the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences.@ This article is based on the proceedings of the conference “Synchrotron Radiation Techniques for Catalysts and Functional Materials” (Novosibirsk, October 31–November 3, 2022).

Funding

This study was supported by the Russian Science Foundation (grant no. 21-73-20075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Pakharukova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

This article is based on the proceedings of the conference “Synchrotron Radiation Techniques for Catalysts and Functional Materials” (Novosibirsk, October 31–November 3, 2022).

Abbreviations and notation: PDF is the atomic pair distribution function; XPS, X-ray photoelectron spectroscopy; STEM, scanning transmission electron microscopy; XRD, X-ray diffraction analysis; TPR, temperature-programmed reduction; TPD, temperature-programmed desorption; CSR, coherent scattering region; EDS, energy dispersive X-ray spectroscopy; CA, citric acid; EG, ethylene glycol; Еbnd, binding energy; UCP, unit cell parameter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakharukova, V.P., Stonkus, O.A., Kharchenko, N.A. et al. Nickel-Based Ni–Ce1–xZrxO2 Catalysts Prepared by the Pechini Method for CO2 Methanation. Kinet Catal 64, 671–682 (2023). https://doi.org/10.1134/S0023158423050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050063

Keywords:

Navigation