Skip to main content
Log in

Biocatalysts and Enzymatic Conversion of Substrates to Valuable Products of Chemical Organic Synthesis: A Review of Domestic Developments

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Biocatalysis in both the homogeneous and heterogeneous versions is an independent interdisciplinary direction in scientific and practical research of single-stage conversions of feed reagents (substrates) to valuable marketable products involving, in most cases, a single enzyme as a catalyst. Single-enzyme biocatalytic processes exhibiting all specific features of enzymatic catalysis are a fairly competitive alternative to conventional chemical production. This review provides information on the results achieved by domestic research teams/laboratories that have been involved in extensive and efficient studies in the field of biocatalysis over the past decades and have practical developments protected by RF patents, which, under favorable circumstances, can be offered to commercial enterprises/companies for testing and use on a laboratory and/or pilot-scale with the prospects of industrial scale-up. In the review, special attention is given to targeted systematic studies of lipolytic enzymes (lipases), which have a unique ability to catalyze reactions in a medium of organic solvents, primarily esterification and transesterification reactions, which lead to the formation of valuable products of organic synthesis, such as esters. Lipases are active components of heterogeneous biocatalysts (BCs) synthesized by fixing (immobilizing) these enzymes on the surface of solid adsorbing supports. The review briefly describes the results of studies of domestic research teams and gives complete lists of their reports providing information on the methods of immobilization of target enzymes, the catalytic properties of the developed BCs (enzyme activity, substrate specificity, operational stability) and describing the conditions for biocatalytic processes involving heterogeneous BCs, such as the synthesis of acrylamide and various esters. Taking into account the average activity (А), which is similar to the activity measured at the half-inactivation time (t1/2), and the operational stability of BCs characterized by the t1/2 value, a fairly rough assessment of the productivity of BCs is conducted by calculating the amount of valuable product produced (in tons) per kilogram of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Berezin, I.V. and Martinek, K., Vvedenie v prikladnuyu enzimologiyu (Introduction to Applied Enzymology), Moscow: Izd. Mosk. Univ., 1982.

  2. Berezin, I.V., Issledovaniya v oblasti fermentativnogo kataliza i inzhenernoi enzimologii (Research in Enzymatic Catalysis and Engineering Enzymology), Moscow: Nauka, 1990.

  3. Biokataliz (Biocatalysis), Berezin, I.V. and Kuznetsov, V.I., Eds., Moscow: Nauka, 1984.

    Google Scholar 

  4. Bommarius, A.S. and Reidel, B.R., Biocatalysis, Weinheim, Germany: Wiley-VCH, 2004.

    Book  Google Scholar 

  5. Hou, C.H., Handbook of Industrial Biocatalysis, Boca Raton, FL: Tailor and Francis, 2005.

    Book  Google Scholar 

  6. Grunwald, P., Biocatalysis, London: Imperial College Press, 2009.

    Book  Google Scholar 

  7. Buchholz, K., Kasche, V., and Bornscheuer, U.T., Biocatalysts and Enzyme Technology, Weinheim, Germany: Wiley-VCH, 2005.

    Google Scholar 

  8. DiCosimo, R., McAuliffe, J., Poulose, A.J., and Bohlmann, G., Chem. Soc. Rev., 2013, vol. 42, p. 6437.

    Article  CAS  PubMed  Google Scholar 

  9. Tao, J. and Kazlauskas, R., Biocatalysis for Green Chemistry and Chemical Process Development, Hoboken, NJ: Wiley, 2011.

    Book  Google Scholar 

  10. Illanes, A., Wilson, L., and Vera, C., Problem Solving in Enzyme Biocatalysis, Hoboken, NJ: Wiley, 2014.

    Google Scholar 

  11. Kovalenko, G.A., Perminova, L.V., and Beklemishev, A.B., Immobilized non-growing microorganisms and their lysates for single-enzyme biocatalytic processes, in Immobilizovannye kletki: biokatalizatory i protsessy (Immobilized Cells: Biocatalysts and Processes), Efremenko, E.N., Ed., Moscow: RIOR, 2018, p. 57. https://doi.org/10.29039/02004-3

  12. Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan, J.M., and Fernandez-Lafuente, R., Enz. Microb. Technol., 2007, vol. 40, p. 1451.

    Article  CAS  Google Scholar 

  13. Bolivar, J.M., Woodley, J.M., and Fernandez-Lafuente, R., Chem. Soc. Rev., 2022, vol. 51, p. 6251.

    Article  CAS  PubMed  Google Scholar 

  14. Astaurova, O.B., Leonova, T.E., Polyakova, K.N., Sineokaya, I.V., Gordeev, V.K., and Yanenko, A.S., Prikl. Biokhim. Mikrobiol., 2000, vol. 36, no. 1, p. 21.

    CAS  PubMed  Google Scholar 

  15. Kovalenko, G.A., Chuenko, T.V., Rudina, N.A., Skrypnik, O.V., Maksimova, Yu.G., and Maksimov, A.Yu., Kinet. Catal., 2009, vol. 50, p. 899.

    Article  CAS  Google Scholar 

  16. Maksimova, Yu.G., Demakov, V.A., Maksimov, A.Yu., Ovechkina, G.V., and Kovalenko, G.A., Prikl. Biokhim. Mikrobiol., 2010, vol. 46, no. 4, p. 416.

    PubMed  Google Scholar 

  17. Maksimova, Yu.G., Rogozhnikova, T.A., Ovechkina, G.V., Maksimov, A.Yu., and Demakov, V.A., Prikl. Biokhim. Mikrobiol., 2012, vol. 48, no. 5, p. 484.

    PubMed  Google Scholar 

  18. Demakov, V.A., Maksimov, A.Yu., Maksimova, Yu.G., and Rogozhnikova, T.A., RF Patent 2500814, 2013.

  19. Maksimova, Yu.G., Mavlyutova, T.A., Maksimov, A.Yu., Ovechkina, G.V., and Demakov, V.A., Vestn. Permsk. Univ., Ser. Biol., 2013, no. 2, p. 49.

  20. Gorbunova, A.N., Maksimova, Yu.G., Ovechkina, G.V., and Maksimov, A.Yu., Prikl. Biokhim. Mikrobiol., 2015, vol. 51, no. 5, p. 482.

    CAS  PubMed  Google Scholar 

  21. Maksimov, A.Yu., Demakov, V.A., Maksimova, Yu.G., and Olontsev, V.F., RF Patent 2352635, 2009.

  22. Maksimova, Yu.G., Nikulin, S.M., Maksimov, A.Yu., and Demakov, V.A., RF Patent 2634414, 2017.

  23. Rahman, S.M.A., Soudagar, M.E., and Fattah, I.M.R., Catalysts, 2021, vol. 11, p. 1121.

    Article  Google Scholar 

  24. Jin, Z., Han, S.-Y., Zhang, L., Zheng, S.-P., Wang, Y., and Lin, Y., Biores. Technol., 2013, vol. 130, p. 102.

    Article  CAS  Google Scholar 

  25. Stoytcheva, M., Montero, G., Toscano, L., Gochev, V., and Valdez, B., in Biodiesel—Feedstocks and Processing Technologies, Rijeka: InTech Europe, 2011, p. 397.

    Book  Google Scholar 

  26. Bajaj, A., Lohan, P., Jha, P.N., and Mehrotra, R., J. Mol. Catal. B: Enzym., 2010, vol. 62, p. 9.

    Article  CAS  Google Scholar 

  27. Cortez, D.V., Reis, C., Perez, V.H., and De Castro, H.F., in Sustainable Biotechnology-Enzymatic Resources of Renewable Energy, Springer, 2018, p. 247. .https://doi.org/10.1007/978-3-319-95480-6

    Book  Google Scholar 

  28. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Yakovleva, E.Yu., and Pykhtina, M.B., Catal. Indust., 2015, vol. 7, no. 1, p. 73.

    Article  Google Scholar 

  29. Luna, C., Gascón-Pérez, V., López-Tenllado, F.J., Bautista, F.M., Verdugo-Escamilla, C., Aguado-Deblas, L., Calero, J., Romero, A.A., Luna, D., and Estévez, R., Catalysts, 2021, vol. 11, p. 1350. https://doi.org/10.3390/catal11111350

    Article  CAS  Google Scholar 

  30. Gómez-Calvo, A., Gallardo, E., and Ladero, M., Catalysts, 2022, vol. 12, p. 1673. https://doi.org/10.3390/catal12121673

    Article  CAS  Google Scholar 

  31. Kopitsyn, D.S., Al’myasheva, N.R., Zhigalova, L.V., and Novikov, A.A., Teor. Prikl. Probl. Agroprom. Kompleksa, 2014, vol. 21, no. 4, p. 3.

    Google Scholar 

  32. Almyasheva, N.R., Shuktueva, M.I., Petrova, D.A., Kopitsyn, D.S., Kotelev, M.S., Vinokurov, V.A., and Novikov, A.A., Mycoscience, 2018, vol. 59, no. 2, p. 147. https://doi.org/10.1016/j.myc.2017.09.003

    Article  Google Scholar 

  33. Samoilova, Yu.V., Piligaev, A.V., Sorokina, K.N., Rozanov, A.S., Pel’tek, S.E., Novikov, A.A., Al’myasheva, N.R., and Parmon, V.N., Kataliz v promyshlennosti, 2015, no. 6, p. 90. https://doi.org/10.19412/180160-0387-2015-6-90-96

  34. Novikov, A.A., Kotelev, M.S., Semenov, A.P., Gushchin, P.A., Ivanov, E.V., Sorokina, K.N., Rozanov, A.S., and Vinokurov, A.S., RF Patent 2528778, 2014.

  35. Kovalenko, G.A., Perminova, L.V., and Sapunova, L.I., A peculiar method for immobilization of non-growing microbial cells by entrapment into silica xerogel, in Biotechnology in Medicine, Foodstuffs, Biocatalysis, Environment and Biogeotechnology, Ser. Biotechnology in Agriculture, Industry and Medicine, Varfolomeev, S.D., Zaikov, G.E., and Krylova, L.P., Eds., New York: NOVA Science Publishers, 2010, p. 41.

  36. Beklemishev, A.B., Pyhtina, M.B., Perminova, L.V., and Kovalenko, G.A., Appl. Biochem. Microbiol., 2022, vol. 58, p. 887.

    Article  CAS  Google Scholar 

  37. Kovalenko, G.A., Beklemishev, A.B., Perminova, L.V., Mamaev, A.L., Chuenko, T.V., and Kuznetsov, V.L., RF Patent 2539101, 2015.

  38. Sidorenko, A.I., Sklyarenko, A.V., and Yarotskii, S.V., Tsitologiya, 2018, vol. 60, no. 7, p. 567. https://doi.org/10.31116/tsitol.2018.07.16

    Article  Google Scholar 

  39. Borgolov, A.V., Vasilov, R.G., Gorin, K.V., Gotovtsev, P.M., D’yakov, A.V., and Sergeeva, Ya.E., RF Patent 2646104, 2018.

  40. Voitkevich, S.A., 865 dushistykh veshchestv dlya parfyumerii i bytovoi khimii (865 Fragrances for Perfumery and Household Chemicals), Moscow: Pishchevaya promyshlennost’, 1994.

  41. Soldatenkov, A.T., Kolyadina, N.M., and Le Tuan’ An’, Osnovy organicheskoi khimii dushistykh veshchestv dlya prikladnoi estetiki i aromaterapii (Fundamentals of Organic Chemistry of Fragrances for Applied Aesthetics and Aromatherapy), Moscow: IKTs Akademkniga, 2006.

  42. Smirnov, E.V., Pishchevye aromatizatory (spravochnik) (Food Flavors (Handbook)), St. Petersburg: Professiya, 2008.

  43. Ferrer, M., Soliveri, J., Plou, F.J., Lopez-Cortes, N., Reyes-Duarte, D., Morten, C.M., Copa-Patino, J.L., and Ballesteros, A., Enzyme Microb. Technol., 2005, vol. 36, p. 391.

    Article  CAS  Google Scholar 

  44. Chang, S.W. and Shaw, J.F., New Biotechnol., 2009, vol. 26, nos. 3–4, p. 109.

  45. Giorgi, V., Botto, E., Fontana, C., Mea, L.D., Vaz, S., Jr., Menéndez, P., and Rodríguez, P., Catalysts, 2022, vol. 12, p. 610. https://doi.org/10.3390/catal12060610

    Article  CAS  Google Scholar 

  46. de Almeida, R.M., Souza, F.T.C., Junior, M.A.C., Albuquerque, N.J.A., Meneghetti, S.M.P., and Meneghetti, M.R., Catal. Commun., 2014, vol. 46, p. 179.

    Article  CAS  Google Scholar 

  47. Stergiou, P.Y., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L.G., Hatziloukas, E., Afendra, A., Pandey, A., and Papamichael, E.M., Biotechnol. Adv., 2013, vol. 31, p. 1846.

    Article  CAS  PubMed  Google Scholar 

  48. Gumel, A.M., Annuar, M.S.M., Heidelberg, T., and Chisti, Y., Proc. Biochem., 2011, vol. 46, p. 2079.

    Article  CAS  Google Scholar 

  49. Sun, J., Lee, L.W.W., and Liu, S.Q., Aust. J. Chem., 2014, vol. 67, p. 1373.

    Article  CAS  Google Scholar 

  50. Villeneuve, P., Biotechnol. Adv., 2007, vol. 25, p. 515.

    Article  CAS  PubMed  Google Scholar 

  51. Pereira, A.S., de Souza, A.H., Fraga, J.L., Villeneuve, P., Torres, A.G., and Amaral, P.F.F., Catalysts, 2022, vol. 12, p. 88. https://doi.org/10.3390/catal12010088

    Article  CAS  Google Scholar 

  52. Zaks, A. and Klibanov, A.M., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, p. 3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wong, C.-H., Science, 1989, vol. 244, p. 1145.

    Article  CAS  PubMed  Google Scholar 

  54. Halling, P.J., Enzyme Microb. Technol., 1994, vol. 16, p. 178.

    Article  CAS  PubMed  Google Scholar 

  55. Janssen, A.E.M., Sjursnes, B.J., Vakurov, A.V., and Halling, P.J., Enz. Microb. Technol., 1999, vol. 24, p. 463.

    Article  CAS  Google Scholar 

  56. Marty, A., Chulalaksananukul, W., Willemot, R.M., and Condoret, J.S., Biotehnol. Bioeng., 1992, vol. 39, p. 273.

    Article  CAS  Google Scholar 

  57. Gamayurova, V.S. and Zinov’eva, M.E., Fermenty. Laboratornyi praktikum (Enzymes. Laboratory Workshop), St. Petersburg: Prospekt nauki, 2011.

  58. Zinov’eva, M.E., Gamayurova, V.S., and Kalacheva, N.V., Biotekhnologiya, 1998, no. 4, p. 81.

  59. Gamayurova, V.S., Zinov’eva, M.E., and Elizarova, E.V., Vestn. Kaliningr. Gos. Tekh. Univ., 2004, no. 1, p. 239.

  60. Elizarova, E.V., Zinov’eva, M.E., and Gamayurova, V.S., Vestn. Kaliningr. Gos. Tekh. Univ., 2006, no. 6, p. 69.

  61. Gamayurova, V.S., Zinov’eva, M.E., Elizarova, E.V., and Vasina, K.L., Vestn. Kaliningr. Gos. Tekh. Univ., 2007, no. 2, p. 103.

  62. Zinov’eva, M.E., Gamayurova, V.S., Shnaider, K.L., and Nazarenko, E.V., Vestn. Tekhnol. Univ., 2015, vol. 18, no. 1, p. 100.

    Google Scholar 

  63. Shnaider, K.L., Sabirzyanova, G.R., Nizamutdinova, M.Kh., Zinov’eva, M.E., and Kayumova, A.F., Vestn. Tekhnol. Univ., 2017, vol. 20, no. 12, p. 129.

    CAS  Google Scholar 

  64. Shnaider, K.L., Kayumova, A.F., Gamayurova, V.S., and Zinov’eva, M.E., Vestn. Tekhnol. Univ., 2017, vol. 20, no. 11, p. 156.

    CAS  Google Scholar 

  65. Gamayurova, V.S., Bil’danova, N.I., and Dzhamai, M., Vestn. Tekhnol. Univ., 2017, vol. 20, no. 10, p. 136.

    CAS  Google Scholar 

  66. Gamayurova, V.S. and Davletshina, G.A., Izv. VUZov. Prikl. Khim. Biotekhnol., 2020, vol. 10, no. 3 (34), p. 515.

  67. Gamayurova, V.S., Vorob’ev, E.S., Shnaider, K.L., and Rzhechitskaya, L.E., Vestn. Povolzh. Gos. Tekh. Univ., Khim. Tekhnol. Biotekhnol., 2021, no. 1, p. 24.

  68. Gamayurova, V.S., Zinov’eva, M.E., and Elizarova, E.V., Katal. Prom-sti, 2008, no. 3, p. 54.

  69. Gamayurova, V.S., Zinov’eva, M.E., Kalacheva, N.V., and Shnaider, K.L., Katal. Prom-sti, 2015, no. 2, p. 73.

  70. Gamayurova, V.S., Shnaider, K.L., and Dzhamai, M.D.D., Katal. Prom-sti, 2016, no. 3, p. 64.

  71. Gamayurova, V.S., Zinov’eva, M.E., Shnaider, K.L., and Davletshina, G.A., Katal. Prom-sti, 2020, vol. 20, no. 3, p. 216.

    CAS  Google Scholar 

  72. Gamayurova, V.S., Shnaider, K.L., Zaripova, S.K., and Jamai, M.J., J. Thermodyn. Catal., 2016, vol. 7, no. 1, p. 161.

    Google Scholar 

  73. Gamayurova, V.S., Vorob’ev, E.S., Davletshina, G.A., and Rzhechitskaya, L.E., Kinet. Katal., 2021, vol. 62, no. 3, p. 316.

    Article  Google Scholar 

  74. RF Patent Application 2022103443/04 (007329), 2022.

  75. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., and Tkachenko, V.I., Appl. Biochem. Microbiol., 2014, vol. 50, no. 7, p. 709.

    Article  CAS  Google Scholar 

  76. Kovalenko G.A., Perminova L.V., Chuenko T.V., and Rudina N.A., Appl. Biochem. Microbiol., 2016, vol. 52, p. 582. https://doi.org/10.1134/S0003683816060089

    Article  CAS  Google Scholar 

  77. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Mamaev, A.L., and Chuenko, T.V., RF Patent 2668405, 2018.

  78. Kovalenko, G.A., Perminova L.V., Beklemishev A.B., Mamaev A.L., and Patrushev Yu.V., Catal. Indust., 2018, vol. 10, no. 1, p. 68.

    Article  Google Scholar 

  79. Perminova, L.V., Kovalenko, G.A., Chukanov, N.V., and Patrushev, Yu.V., Russ. Chem. Bull., Int. Ed., 2017, vol. 66, no. 11, p. 2194.

    CAS  Google Scholar 

  80. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., and Pykhtina, M.B., Vestn. Povolzh. Gos. Tekh. Univ., Khim. Tekhnol. Biotekhnol., 2018, no. 2, p. 7. https://doi.org/10.15593/2224-9400/2018.2.01

  81. Kovalenko, G.A., Perminova, L.V., and Beklemishev, A.B., React. Kinet. Mech. Catal., 2019, vol. 128, no. 1, p. 479. https://doi.org/10.1007/s11144-019-01648-z

    Article  CAS  Google Scholar 

  82. Kovalenko, G.A., Perminova, L.V., Pykhina, M.B., and Beklemishev, A.B., Biocatal. Agricult. Biotechnol., 2021, vol. 36, p. 102124.

    Article  CAS  Google Scholar 

  83. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Pykhtina, M.B., Kuznetsov, V.L., and Moseenkov, S.I., RF Patent 2725474, 2020.

  84. Kovalenko, G.A., Perminova, L.V., Krasnikov, D.V., and Kuznetsov, V.L., J. Porous Mater., 2018, vol. 25, p. 1017.

    Article  CAS  Google Scholar 

  85. Kovalenko G.A. and Perminova L.V., Catal. Indust., 2021, vol. 13, no. 1, p. 90. https://doi.org/10.1134/S2070050421010074

    Article  Google Scholar 

  86. Kovalenko, G.A., Perminova, L.V., and Beklemishev, A.B., Catal. Today, 2021, vol. 379, p. 36. https://doi.org/10.1016/j.cattod.2020.11.018

    Article  CAS  Google Scholar 

  87. Kovalenko, G.A., Perminova, L.V., Shashkov, M.V., and Beklemishev A.B., Kinet. Catal., 2022, vol. 63, p. 188. https://doi.org/10.1134/S0023158422020045

    Article  CAS  Google Scholar 

  88. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Pykhtina, M.B., Holyavka, M.G., Buchelnikova, V.A., and Artyukhov, V.G., Prikl. Biokhim. Mikrobiol., 2022, vol. 58, no. 5, p. 540. https://doi.org/10.1134/S000368382205009X

    Article  CAS  Google Scholar 

  89. Abildskov, J., van Leeuwen, M.B., Boeriu, C.G., and van den Broek, L.A.M., J. Mol. Catal. B: Enzym., 2013, vols. 85–86, p. 200. https://doi.org/10.1016/j.molcatb.2012.09.012

    Article  CAS  Google Scholar 

  90. Wu, S., Wu, Y., Sun, B., Zhang, P., and Tang, K., React. Kinet. Mech. Catal., 2022. https://doi.org/10.1007/s11144-022-02339-y

  91. Laane, C., Boeren, S., Vos, R., and Veeger, C., Biotechnol. Bioeng., 1987, vol. 30, p. 81.

    Article  CAS  PubMed  Google Scholar 

  92. Cabrera, Z., Fernandez-Lorente, G., Palomo, J.M., Fernandez-Lafuente, R., and Guisan, J.M., J. Mol. Catal. B: Enzym., 2009, vol. 57, p. 171.

    Article  CAS  Google Scholar 

  93. Turati, D.F.M., Morais, W.G.Jr., Terrasan, C.R.F., Moreno-Perez, S., Pessela, B.C., Fernandez-Lorente, G., Guisan, J.M., and Carmona, E.C., Molecules, 2017, vol. 22, p. 339.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Silveira, E.A., Moreno-Perez, S., Basso, A., Serban, S., Mamede, R.P., Tardioli, P.W., Farinas, C.S., Rocha-Martin, J., Fernandez-Lorente, G., and Guisan, J.M., BMC Biotechnol., 2017, vol. 17, p. 88.

    Article  CAS  Google Scholar 

  95. Bohr, S.S., Lund, P.M., Kallenbach, F.S., Pinholt, Y., Thomsen, J., and Iversen, L., Sci. Rep., 2019, vol. 9, p. 16169. https://doi.org/10.1038/s41598-019-52539-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to L.V. Perminova and A.B. Beklemishev for active participation in experimental studies. The author is grateful to Yu.G. Maksimova (yul_max@mail.ru, Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm) and K.L. Shnaider (0202-84@mail.ru, Kazan National Research Technological University) for editing the text and comments.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state task to Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (project no. AAAA-A21-121011390007-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kovalenko.

Ethics declarations

The author of this work declares that she has no conflict of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: BC, biocatalyst; BCPs, biocatalytic processes; Aimm, immobilized enzyme activity; Asol, enzyme activity in solution; A, average activity of BC; t1/2, half-inactivation time of BC; EAS, enzyme-active substance; NH, nitrile hydratase; CFC, catalytic filamentous carbon; FA, fatty acid; FAMEs, fatty acid methyl esters; FAEEs, fatty acid ethyl esters; PL, pancreatic lipase; DEE, diethyl ether; CNT, carbon nanotube; P, partition coefficient in the water/octanol biphasic system; CS, computer simulation; TLL, Thermomyces lanuginosus lipase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, G.A. Biocatalysts and Enzymatic Conversion of Substrates to Valuable Products of Chemical Organic Synthesis: A Review of Domestic Developments. Kinet Catal 64, 495–520 (2023). https://doi.org/10.1134/S0023158423050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050051

Keywords:

Navigation