Skip to main content
Log in

An Efficient and Practical Process for the Synthesis of Benzimidazole and Benzothiazole Derivatives Catalyzed by Layered Zirconium Phosphate: Effect of Calcinations Temperature

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

In this work, layered zirconium phosphates were synthesized via a reflux method and calcined at different temperatures (200, 400, and 600°C). The catalytic activity of the prepared solids was tested in the condensation of o-phenylenediamine and o-aminothiophenol with various aromatic aldehydes. The reaction conditions were optimized taking into account some parameters that control the reaction, namely the nature and volume of the solvent and the mass of the catalyst. The results showed that solid ZrP-200 (layered zirconium phosphate calcined at 200°C) is the best performing catalyst for this reaction, because it has good catalytic activity and can be reused for at least five cycles with only a slight decrease in catalytic activity. In addition, a possible mechanism for the synthesis of benzimidazoles and benzothiazoles over ZrP-200 was proposed and discussed at the end of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chehab, S., Merroun, Y., Ghailane, T., Ghailane, R., Boukhris, S., Lakhrissi, B., and Souizi, A., A facile and efficient synthesis of tetrahydrobenzo[b]pyrans and dihydropyrano[4,3-b]pyrans derivatives using phosphate fertilizers MAP, DAP, and TSP as heterogeneous catalysts, J. Iran. Chem. Soc., 2021, vol. 18, p. 2665.

    Article  CAS  Google Scholar 

  2. Chehab, S., Merroun, Y., Ghailane, T., Ghailane, R., Boukhris, S., and Souizi. A., A green and efficient method for the synthesis of 3,4-dihydropyrano[c]chromene using phosphate fertilizers (MAP, DAP and TSP) as heterogeneous catalysts, J. Turk. Chem. Soc. A: Chem., 2018, vol. 5, p. 355.

    Article  CAS  Google Scholar 

  3. Sinhamahapatra, A., Sutradhar, N., Roy, B., Tarafdar, A., Bajaj, H.C., and Panda, A.B., Mesoporous zirconium phosphate catalyzed reactions: Synthesis of industrially important chemicals in solvent-free conditions, Appl. Catal. A, 2010, vol. 385, p. 22.

    Article  CAS  Google Scholar 

  4. Tarafdar, A., Panda, A.B., Pradhan, N.C., and Pramanik, P., Synthesis of spherical mesostructured zirconium phosphate with acidic properties, Micropor. Mesopor. Mater., 2006, vol. 95, p. 360.

    Article  CAS  Google Scholar 

  5. Ahl el Haj, T., El Mejdoubi, K., Sadraoui, K., Sallek, B., Phosphate of zirconium as a reusable efficient catalyst for the synthesis of 2-arylquinazolin-4(3h)-ones, Kinet. Catal., 2022, vol. 63, p. 707.

    Article  Google Scholar 

  6. Abdolmohammadi, S., Study of the catalytic activity of Zr(HPO4)2 in the synthesis of hexahydroquinoline derivatives under solvent-free conditions, Z. Naturforsch., 2013, vol. 68, p. 195.

    Article  CAS  Google Scholar 

  7. Hajipour, A.R., and Karimi, H., Hexagonal zirconium phosphate nanoparticles as an efficient and recyclable catalyst for selective solvent-free alkylation of phenol with cyclohexanol, Appl. Catal. A: Gen., 2014, vol. 482, p. 99.

    Article  CAS  Google Scholar 

  8. Xie, H., Lai, X., Li, H., and Zeng, X., Remarkably improving the fire-safety of polypropylene by synergism of functionalized ZrP nanosheet and N-alkoxy hindered amine, Applied Clay. Science, 2018, vol. 166, p. 61.

    Article  CAS  Google Scholar 

  9. Karimi, H., An efficient selective oxidation of alcohols with zinc zirconium phosphate under solvent-free conditions, J. Chin. Chem. Soc., 2015, vol. 62, p. 604.

    Article  CAS  Google Scholar 

  10. Karimi, H., Preparation of zirconium phosphate nanoparticles and its application in the protection of aldehydes, J. Sci. I. R. Iran., 2017, vol. 28, p. 313.

    Google Scholar 

  11. Rosati, O., Curini, M., Montanari, F., Nocchetti, M., and Genovese, S., α-Zirconium sulfophenylphosphonate as a catalyst for the synthesis of 3,4-dihydropyrimidin-2(1h)-one derivatives under solvent free conditions, Catal. Lett., 2011, vol. 141, p. 850.

    Article  CAS  Google Scholar 

  12. Huang, S.T., Hsei, I.J., and Chen, C., Synthesis and anticancer evaluation of bis(benzimidazoles), bis(benzoxazoles), and benzothiazoles, Bioorg. Med. Chem. Lett., 2006, vol. 14, p. 6106.

    Article  CAS  Google Scholar 

  13. Mader, M., De Dios, A., Shih, C., Bonjouklian, R., Li, T., White, W., de Uralde, B.L., Sánchez-Marti-nez, C., Del Prado, M., Jaramillo, C., De Diego, E., Martín Cabrejas, L.M., Dominguez, C., Montero, C., Shepherd, T., et al., Imidazolyl benzimidazoles and imidazo[4,5-b]pyridines as potent p38a MAP kinase inhibitors with excellent in vivo antiinflammatory properties, Bioorg. Med. Chem., 2008, vol. 18, p. 179.

    Article  CAS  Google Scholar 

  14. Kumar, D., Jacob, M.R., Reynolds, M.B., and Kerwin, S.M., Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1, Bioorg. Med. Chem., 2002, vol. 10, p. 3997.

    Article  CAS  PubMed  Google Scholar 

  15. Kohara, Y., Kubo, K., Imamiya, E., Wada, T., Inada, Y., and Naka, T., Synthesis and angiotensin II receptor antagonistic activities of benzimidazole derivatives bearing acidic heterocycles as novel tetrazole bioisosteres, J. Med. Chem., 1996, vol. 39, p. 5228.

    Article  CAS  PubMed  Google Scholar 

  16. Yildiz-Oren, I., Yalcin, I., Aki-Sener, E., and Ucarturk, N., Synthesis and structure–activity relationships of new antimicrobial active multisubstitutedbenzazole derivatives, Eur. J. Med. Chem., 2004, vol. 39, p. 291.

    Article  CAS  PubMed  Google Scholar 

  17. Yamato, M., and Zasshi, Y., Study on the development of biological-active compounds after the model of natural products, J. Pharmaceut. Soc. Jpn., 1992, vol. 112, p. 81.

    Article  CAS  Google Scholar 

  18. Benazzouz, T., Boraud, P., Dubédat, A., Boireau, J.M., Stutzmann, C., and Gross, C., Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study, Eur. J. Pharmacol., 1995, vol. 284, p. 299.

    Article  CAS  PubMed  Google Scholar 

  19. Shingalapur, R.V., Hosamani, K.M., Keri, R.S., and Hugar, M.H., Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies, Eur. J. Med. Chem., 2010, vol. 45, p. 1753.

    Article  CAS  PubMed  Google Scholar 

  20. Morningstar, M.L., Roth, T., Farnsworth, D.W., Smith, K.M., Watson, K., Buckheit, R.W., Das, K., Zhang, W., Arnold, E., Julias, J.G., Hughes, S.H., and Michejda, C.J., Synthesis, biological activity, and crystal structure of potent nonnucleoside inhibitors of HIV-1 reverse transcriptase that retain activity against mutant forms of the enzyme, J. Med. Chem., 2007, vol. 50, p. 4003.

  21. Boiani, M., and Gonzalez, M., Imidazole and benzimidazole derivatives as chemotherapeutic agents, Mini-Rev. Med. Chem., 2005, vol. 5, p. 409.

    Article  CAS  PubMed  Google Scholar 

  22. Zarrinmayeh, H., Zimmerman, D.M., Cantrell, B.E., Schober, D.A., Bruns, R.E., Gackenheimer, S.L., Ornstein, P.L., Hipskind, P.A., Britton, T.C., and Gehlert. D.R., Structure–activity relationship of a series of diaminoalkyl substituted benzimidazole as neuropeptide Y Yi receptor antagonists, Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 647.

    Article  CAS  PubMed  Google Scholar 

  23. Camacho, J., Barazarte, A., Gamboa, N., Rodrigues, J., Rojas, R., Vaisberg, A., Gilman, R., and Charris, J., Synthesis and biological evaluation of benzimidazole-5-carbohydrazide derivatives as antimalarial, cytotoxic and antitubercular agents, Bioorg. Med. Chem., 2011, vol. 19, p. 2023.

    Article  CAS  PubMed  Google Scholar 

  24. Figge, A., Altenbach, H.J., Brauer, D.J., and Tielmann, P., Synthesis and resolution of 2-(2-diphenylphosphinyl-naphthalen-1-yl)-1-isopropyl-1H-benzoimidazole; a new atropisomeric P,N chelating ligand for asymmetric catalysis, Tetrahedron Asymmetry, 2002, vol. 13, p. 137.

    Article  CAS  Google Scholar 

  25. Asensio, J.A., and Gomez-Romero, P., Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells, Fuel Cells, 2005, vol. 5, p. 336.

    Article  CAS  Google Scholar 

  26. Chaudhuri, P., Ganguly, B., and Bhattacharya, S., An experimental and computational analysis on the differential role of the positional isomers of symmetric bis-2-(pyridyl)-1H-benzimidazoles as DNA binding agents, J. Org. Chem., 2007, vol. 72, p. 1912.

    Article  CAS  PubMed  Google Scholar 

  27. Xiong, Y., Wang, K., Ma, L.; Zhu, J., Miao, Y., Gong, L., Mu, X., Wan, J., and Li, R., Bimetallic CoMoO4 @C nanorod catalyzes one-pot synthesis of benzimidazoles from benzyl alcohol and o-phenylendiamine without alkali, Appl. Organom. Chem., 2022, vol. 36.

    Book  Google Scholar 

  28. Merroun, Y., Chehab, S., Ghailane, T., Mohamed Akhazzane, M., Souizi, A., and Ghailane, R., Preparation of tin-modified mono-ammonium phosphatefertilizer and its application as heterogeneous catalyst in the benzimidazoles and benzothiazoles synthesis, React. Kinet. Mech. Catal., 2018, vol. 126, p. 249.

    Article  Google Scholar 

  29. Inamdar, S.M., More, V.K., and Mandal, S.K., CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles, Tetrahedron Lett., 2013, vol. 54, p. 579.

    Article  CAS  Google Scholar 

  30. Benzekri, Z., Sibous, S., Serrar, H., Ouasri, A., Boukhris, S., Rhandour, A., Souizi, A., NH3(CH2)5NH3BiCl5: An efficient and recyclable catalyst for the synthesis of benzoxazole, benzimidazole and benzothiazole heterocycles, J. Iran. Chem. Soc., 2018, vol. 15, p. 2781.

    Article  CAS  Google Scholar 

  31. Kommula, D. and Madugula, S.R.M., Synthesis of benzimidazoles/benzothiazoles by using recyclable, magnetically separable nano-Fe2O3 in aqueous medium, J. Iran. Chem. Soc., 2017, vol. 14, p. 1665.

    Article  CAS  Google Scholar 

  32. Shojaee, S. and Shahri, M.M., An efficient synthesis and cytotoxic activity of 2-(4-chlorophenyl)-1H-benzo[d]imidazole obtained using a magnetically recyclable Fe3O4 nanocatalyst-mediated white tea extract, Appl. Organomet. Chem., 2018, vol. 32, p. 79.

    Article  Google Scholar 

  33. Benzekri, Z., Serrar, H., Sibous, S., Boukhris, S., Ouasri, A., Rhandour, A., andSouizi, A., Hybrid crystal NH3(CH2)4NH3SiF6 as an efficient catalyst for the synthesis of benzoxazoles, benzimidazoles and benzothiazoles under solvent-free conditions, Green Chem. Lett. Rev., 2016, vol. 9, p. 223.

    Article  CAS  Google Scholar 

  34. Hajipour, A.R., Zakery, S., and Khorsandi, Z., Synthesis of benzimidazoles by two methods (C–H functionalization and condensation reaction) catalyzed by α-zirconium hydrogen phosphate-based nanocatalyst, J. Iran. Chem. Soc., 2020, vol. 17, p. 1919.

    Article  CAS  Google Scholar 

  35. El Mejdoubi, K., Sallek, B., Cherkaoui, H., Chaair, H., and Oudadess, H., One-pot synthesis of dihydropyrimidinones/thiones catalyzed by white marble a metamorphic rock: An efficient and reusable catalyst for the Biginelli reaction, Kinet. Catal., 2018, vol. 59, p. 290.

    Article  CAS  Google Scholar 

  36. El Mejdoubi, K., Bahammou,R., Benzekri, Z., Sallek, B., Cherkaoui, H., and Boukhris, S., KO9 as an efficient catalyst for the synthesis of benzimidazoles and benzothiazoles, Int. J. Sci. Eng. Res., 2017, vol. 8, p. 419.

    Google Scholar 

  37. El Mejdoubi, K., Sallek, B., Digua, K., Chaair, H., and Oudadess, H., Natural phosphate K09 as a new reusable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives at room temperature, Kinet. Catal., 2019, vol. 60, p. 536.

    Article  CAS  Google Scholar 

  38. Benzekri, Z., El Mejdoubi, K., Boukhris, S., Sallek, B., Lakhrissi,B., and Souizi, A., Dicalcium phosphate dehydrate DCPD as a highly efficient and reusable catalyst for Knoevenagel condensation, Synth. Commun., 2016, vol. 46, p. 442.

    Article  CAS  Google Scholar 

  39. Pichaimani, P., Arumugam, H., Gopalakrishnan, D., Krishnasam, B., and Muthukaruppan, A., Partially exfoliated α-ZrP reinforced unsaturated polyester nanocomposites by simultaneous co-polymerization and Brønsted acid-base strategy, J. Inorg. Organomet. Polym. Mater., 2020, vol. 30, p. 4095.

    Article  CAS  Google Scholar 

  40. Hajipour, A.R., and Karimi, H., Synthesis and characterization of hexagonal zirconium phosphate nanoparticles, Mater. Lett., 2014, vol. 116, p. 356.

    Article  CAS  Google Scholar 

  41. Costantino, U., Vivani, R., Zima, V., and Cernoskova, E., Thermoanalytical study, phase transitions, and dimensional changes of α-Zr(HPO4)2∙H2O large crystals, J. Solid State Chem., 1997, vol. 132, p. 17.

    Article  CAS  Google Scholar 

  42. Gan, H., Zhao, X., Song, B., Guo, Li., Zhang, R., Chen, C., Chen, J., Zhu, W., and Hou, Z., Gas phase dehydration of glycerol to acrolein catalyzed by zirconium phosphate, Chin. J. Catal., 2014, vol. 35, p. 1148.

    Article  CAS  Google Scholar 

  43. Sinhamahapatra, A., Sutradhar, N., Roy, B., Pal, P., Bajaj, H.C., and Panda, A.B., Microwave assisted synthesis of fine chemicals in solvent-free conditions over mesoporous zirconium phosphate, Appl. Catal., 2011, vol. 103, p. 378.

    Article  CAS  Google Scholar 

  44. Sinhamahapatra, A., Sutradhar, N., Roy, B., Tarafdar, A., Bajaj, H.C., and Panda, A.B., Mesoporous zirconium phosphate catalyzed reactions: Synthesis of industrially important chemicals in solvent-free conditions, Appl. Catal. A: Gen., 2010, vol. 385, p. 22.

    Article  CAS  Google Scholar 

  45. Liu, Q.Y., Liao, Y.H., Wang, T.J., Cai, C.L., Zhang, Q., Tsubaki, N., and Ma, L.L., One-pot transformation of cellulose to sugar alcohols over acidic metal phosphates combined with Ru/C, Ind. Eng. Chem. Res., 2014, vol. 53, p. 12655.

    Article  CAS  Google Scholar 

  46. Jiménez-Jiménez, J., Maireles-Torres, P., Olivera-Pastor, P., Rodríguez-Castellón, E., Jiménez López, A., Jones, D.J., and Rozière, J., Surfactant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties, Adv. Mater., 1998, vol. 10, p. 812.

    Article  Google Scholar 

  47. Dhopte, K.B., Zambare, R.S., Patwardhan, A.V., and Nemade, P.R., Role of graphene oxide as heterogeneous acid catalyst and benign oxidant for synthesis of benzimidazoles and benzothiazoles, RSC Adv., 2016, vol. 6, p. 8164.

    Article  CAS  Google Scholar 

  48. Li, X., Jiang, Y., Zhou, R., and Hou, Z., Layered α-zirconium phosphate: An efficient catalyst for the synthesis of solketal from glycerol, Appl. Clay Sci., 2019, vol. 174, p. 120.

    Article  CAS  Google Scholar 

  49. Weingarten, R., Kim, Y.T., Tompsett, G.A., Fernández, A., Han, K., and Huber, G.W., Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts, J. Catal., 2013, vol. 304, p. 123.

    Article  CAS  Google Scholar 

  50. Bardajee, G.R., Mohammadi, M., Yari, H., and Ghaedi, A., Simple and efficient protocol for the synthesis of benzoxazole, benzoimidazole and benzothiazole heterocycles using Fe(III)–Schiff base/SBA-15 as a nanocatalyst, Chin. Chem. Lett., 2016, vol. 27, p. 265.

    Article  CAS  Google Scholar 

  51. Banerjee, S., Payra, S., Saha, A., and Sereda, G., ZnO nanoparticles: A green efficient catalyst for the room temperature synthesis of biologically active 2-aryl-1,3-benzothiazole and 1,3-benzoxazole derivatives, Tetrahedron Lett., 2014, vol. 55, p. 5515.

    Article  CAS  Google Scholar 

  52. Padalkar, V.S., Gupta, V.D., Phatangare, K.R., Patil, V.S., Umape, N., and Sekar, P.G., Indion 190 resin: Efficient, environmentally friendly, and reusable catalyst for synthesis of benzimidazoles, benzoxazoles, and benzothiazoles, Green Chem. Lett. Rev., 2012, vol. 5, p. 139.

    Article  CAS  Google Scholar 

  53. Riadi, Y., Mamouni, R., Azzalou, R., Haddad, M.E., Routier, S., Guillaumet, G., and Lazar, S., An efficient and reusable heterogeneous catalyst animal bone meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles, Tetrahedron Lett., 2011, vol. 52, p. 3492.

    Article  CAS  Google Scholar 

  54. Kardanpour, R., Tangestaninejad, S., Mirkhani, V., Moghadam, M., Baltork, I.M., and Zadehahmadi, F., Anchoring of Cu(II) onto surface of porous metal−organic framework through post synthesis modification for the synthesis of benzimidazoles and benzothiazoles, J. Solid State Chem., 2015, vol. 235, p. 145.

    Article  Google Scholar 

  55. Venkateswarlu, Y., Kumar, S.R., and Leelavathi, P., Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride, Org. Med. Chem. Lett., 2013, vol. 3, p. 3.

    Article  Google Scholar 

  56. Lee, Y.S., Cho, Y.H., Lee, S., Bin, J.K., Yang, J., Chae, G., and Cheon., C.-H., Significant facilitation of metal-free aerobic oxidative cyclization of imines with water in synthesis of benzimidazoles, Tetrahedron, 2015, vol. 71, p. 532.

    Article  CAS  Google Scholar 

  57. Nguyen, The-Thaï, Nguyen, X.T.T., Nguyen, Thuy-Linh Ho, and Tran, P.H., Synthesis of benzoxazoles, benzimidazoles, and benzothiazoles using a Brønsted acidic ionic liquid gel as an efficient heterogeneous catalyst under a solvent-free condition, ACS Omega, 2019, vol. 4, p. 368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, X.Z., Ren, T.Z., and Yuan, Z.Y., Mesoporous zirconium phosphonate materials as efficient water-tolerable solid acid catalysts, Catal. Sci. Technol., 2015, vol. 5, p. 1485.

    Article  CAS  Google Scholar 

  59. Sinhamahapatra, A., Sutradhar, N., Pahari, S., Bajaj, H.C., and Panda, A.B., Mesoporous zirconium phosphate: An efficient catalyst for the synthesis of coumarin derivatives through Pechmann condensation reaction, Appl. Catal. A: Gen., 2011, vol. 394, p. 93.

    Article  CAS  Google Scholar 

  60. Tang, J., Cao, Y., Ruan, F., Li, F., Jin, Y., Ha, M.N., Han, X., and Ke, Q., New approach for controllable synthesis of N-MnOx microflowers and their superior catalytic performance for benzoxazole synthesis, Ind. Eng. Chem. Res., 2020, vol. 59, p. 9408.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khadija Sadraoui, Touayba Ahlelhaj or Brahim Sallek.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: BIZ, benzimidazole; BTZ, benzothiazole; TLC, thin-layer chromatography; BET, Brunauer–Emmet–Teller method; NMR, nuclear magnetic resonance; DMSO-d6, deuterated dimethyl sulfoxide; XRD, X-ray diffraction analysis; FT-IR, Fourier transform infrared spectroscopy; THF, tetrahydrofuran.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadraoui, K., Ahlelhaj, T., El Mejdoubi, K. et al. An Efficient and Practical Process for the Synthesis of Benzimidazole and Benzothiazole Derivatives Catalyzed by Layered Zirconium Phosphate: Effect of Calcinations Temperature. Kinet Catal 64, 616–626 (2023). https://doi.org/10.1134/S0023158423050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050099

Keywords:

Navigation