Skip to main content
Log in

Mathematical Modeling of CO2 Reforming of Methane with Reverse Water-Gas Shift Reaction

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Synthesis gas is the cornerstone of many chemical processes for manufacturing a broad range of petrochemical products. In this work, a mathematical model was developed for investigation of the CO2 reforming of methane in a catalytic packed bed reactor. To simulate the reformer, a pseudo homogenous two-dimensional mathematical model was developed and the resulting nonlinear second order partial differential equations were solved using the finite difference method. It was assumed that equilibrium reverse water-gas shift reaction always takes place in the reactor to adjust H2/CO ratio (≤1). The effect of operating conditions, including bulk density, porosity, inlet gas and wall temperature, reactor diameter, total molar flow of gas and inlet CH4/CO2 ratio on the reactor performance were investigated. Finally, the study investigated the effect of H2/CO ratio on the outlet synthesis gas product at the range of 0.7–1. The validity of the model was investigated and the deviation between the model results and the experimental data was acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Shi, C., Elgarni, M., and Mahinpey, N., Chem. Eng. Sci., 2021, vol. 233, p. 116364.

    Article  CAS  Google Scholar 

  2. Rafiee, A., Rajab Khalilpour, K., Milani, D., and Panahi, M., J. Environ. Chem. Eng., 2018, vol. 6, no. 5, p. 5771.

    Article  CAS  Google Scholar 

  3. Nouri, S.M.M., Ebrahim, H.A., Nasernejad, B., and Afsharebrahimi, A., Chem. Eng. Commun., 2016, vol. 203, no. 1, p. 1.

    Article  CAS  Google Scholar 

  4. Nouri, S.M.M., Ale Ebrahim, H., and Naser Nejad, B., Synth. React. Inorg. Met.-Org. Chem., 2015, vol. 45, no. 6, p. 828.

    Article  CAS  Google Scholar 

  5. Rodriguez-Vega, P., Ateka, A., Kumakiri, I., Vicente, H., Ereña, J., Aguayo, A.T., and Bilbao, J., Chem. Eng. Sci., 2021, vol. 234, p. 116396.

    Article  CAS  Google Scholar 

  6. Zhao, L., Liu, X., Mu, X., Li, Y., and Fang, K., J. CO2 Util., 2020, vol. 37, p. 45.

  7. Tackett, B.M., Lee, J.H., and Chen, J.G., Acc. Chem. Res., 2020, vol. 53, no. 8, p. 1535.

    Article  CAS  PubMed  Google Scholar 

  8. Niu, J., Ran, J., and Chen D., Appl. Surf. Sci., 2020, vol. 513, p. 145840.

    Article  CAS  Google Scholar 

  9. Liu, Y., Tian, D., Biswas, A.N., Xie, Z., Hwang, S., Lee, J.H., Meng, H., and Chen, J.G., Angew. Chem. Int. Ed., 2020, vol. 59, no. 28, p. 11345.

    Article  CAS  Google Scholar 

  10. He, Q., Liu, D., Lee, J.H., Liu, Y., Xie, Z., Hwang, S., Kattel, S., Song, L., and Chen, J.G., Angew. Chem. Int. Ed., 2020, vol. 59, no. 8, p. 3033.

    Article  CAS  Google Scholar 

  11. Al-Mamoori, A., Rownaghi, A.A., and Rezaei, F., ACS Sustainable Chem. Eng., 2018, vol. 6, no. 10, p. 13551.

    Article  CAS  Google Scholar 

  12. Dutta, A., Farooq, S., Karimi, I.A., and Khan, S.A., J. CO2 Util., 2017, vol. 19, p. 49.

  13. Jang, W.J., Shim, J.O., Kim, H.-M., Yoo, S.-Y., and Roh, H.-S., Catal. Today., 2019, vol. 324, p. 15.

    Article  CAS  Google Scholar 

  14. Abdulrasheed, A., Jalil, A.A., Gambo, Y., Ibrahim, M., Hambali, H.U., and Shahul Hamid, M.Y., Renewable Sustainable Energy Rev., 2019, vol. 108, p. 175.

    Article  CAS  Google Scholar 

  15. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., and Ahmad, M.N., Renewable Sustainable Energy Rev., 2018, vol. 82, p. 2570.

    Article  CAS  Google Scholar 

  16. Abdullah, B., Abd Ghani, N.A., and Vo, D.-V.N., J. Cleaner Prod., 2017, vol. 162, p. 170.

    Article  CAS  Google Scholar 

  17. Tian, L., Zhao, X.H., Liu, B.S., and Zhang, W.D., Energy Fuels, 2009, vol. 23, no. 2, p. 607.

    Article  CAS  Google Scholar 

  18. Cui, Y.H., Zhang, H.D., Xu, H.Y., and Li, W.Z., Appl. Catal. A: Gen., 2007, vol. 318, p. 79.

    Article  CAS  Google Scholar 

  19. Chubb, T.A., Sol. Energy, 1980, vol. 24, p. 341.

    Article  CAS  Google Scholar 

  20. Richardson, J.T., and Paripatysdar, S.A., Appl. Catal. A: Gen., 1990, vol. 61, p. 293.

    Article  CAS  Google Scholar 

  21. Cheng, D.G., Zhu, X.L., Ben, Y.H., He, F., Cui, L., and Liu, C.J., Catal. Today, 2006, vol. 115, p. 205.

    Article  CAS  Google Scholar 

  22. Wang, S., Lu, G.Q., and Millar, G.J., Energy Fuels, 1996, vol. 10, no. 4, p. 896.

    Article  CAS  Google Scholar 

  23. Teuner, S.C., Neumann, P., and Von Linde, F., Oil Gas Eur. Mag., 2001, p. 45.

  24. Froment, G.F., and Bischoff, K.B., Chemical Reactor Analysis and Design, New York: Wiley, 1990.

    Google Scholar 

  25. Svendsen, H.F., Grevskott, S., and Lysberg, M., Pseudohomogen og heterogen todimensjonal dispersjonsmodell for gassfase fixed-bed reaktorer, in SINTEF Report, 1996.

  26. Aboudheir, A., Akande, A., Idem, R., and Dalai, A., Int. J. Hydrogen Energy, 2006, vol. 31, no. 6, p. 752.

    Article  CAS  Google Scholar 

  27. Akpan, E., E, Sun, Y., Kumar, P., Ibrahim, H., Aboudheir, A., and Idem, R., Chem. Eng. Sci., 2007, vol. 62, p. 4012.

    Article  CAS  Google Scholar 

  28. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 2007.

    Google Scholar 

  29. Xu, J., and Froment, G.F., AlChE J., 1989, vol. 35, no. 1, p. 88.

    Article  CAS  Google Scholar 

  30. Rebrov, E.V., Advances in water-gas shift technology: Modern catalysts and improved reactor concepts, in Advances in Clean Hydrocarbon Fuel Processing, Khan, M.R., Ed., Woodhead Publishing, 2011. p. 387.

    Google Scholar 

  31. Kiusalaas, J., Numerical Methods in Engineering with MATLAB®, New York: Cambridge Univ., 2005.

    Book  Google Scholar 

  32. Piemonte, V., Di Paola, L., De Falco, M., Iulianel-li, A., and Basile, A., Hydrogen production using inorganic membrane reactors, in Advances in Hydrogen Production, Storage and Distribution, Basile, A. and Iulianelli, A., Eds., Sawston, UK: Woodhead Publishing, 2014, p. 283.

    Google Scholar 

  33. Sharifianjazi, F., Esmaeilkhanian, A., Bazli, L., Eskandarinezhad, S., Khaksar, S., Shafiee, P., Yusuf, M., Abdullah, B., Salahshour, P., and Sadeghi, F., Int. J. Hydrogen Energy, 2022, vol. 47, no. 100, p. 42213.

    Article  CAS  Google Scholar 

  34. Bychkov, V.Y., Tyulenin, Y.P., Krylov, O.V., and Korchak, V.N., Kinet. Catal., 2002, vol. 43, no. 5, p. 724.

    Article  CAS  Google Scholar 

  35. Li, C.-L., Fu, Y.-L., Bian, G.-Z., Xie, Y.-N., Hu, T.-D., and Zhang, J., Kinet. Catal., 2004, vol. 45, no. 5, p. 679.

    Article  CAS  Google Scholar 

  36. Osaki, T., Kinet. Catal., 2019, vol. 60, no. 6, p. 818.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Ahmad Reza Rahimi: developing the mathematical model and MATLAB code.

Habib Ale Ebrahim: supervision, conceptualization.

Morteza Sohrabi: supervision, conceptualization.

Seyed Mohammad Mahdi Nouri: writing the manuscript, data analyzing.

Corresponding author

Correspondence to Seyed Mohammad Mahdi Nouri.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A.R., AleEbrahim, H., Sohrabi, M. et al. Mathematical Modeling of CO2 Reforming of Methane with Reverse Water-Gas Shift Reaction. Kinet Catal 64, 578–587 (2023). https://doi.org/10.1134/S0023158423050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050087

Keywords:

Navigation