Skip to main content
Log in

“Golden Age” of Homogeneous Catalytic Chemistry of Alkynes: Some Oxidative Transformations of Alkynes (A Review)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Methods for carrying out coupling reactions in the chemistry of alkynes to form C–C bonds (oxidative dehydrocondensation reactions, Cadiot–Chodkiewicz reaction, and Sonogashira reaction) are analyzed and generalized. Protocols of synthesis of products of these reactions are also presented, including homogeneous and heterogeneous catalytic systems. In all cases, emphasis is placed on the kinetics and mechanisms of reactions with the discussion of the results of kinetic and spectrometric studies of the mechanisms of coupling reactions involving Cu(I, II, III), Au(I, III), Pd(0, I, II), and Fe (0, I, II, III) complexes. Particular attention is paid to the heterogeneous catalysis of oxidation reactions of alkynes with the participation of nanoparticles and nanoclusters of Pd, Au, Ag, and other metals. The nature of the intermediates containing these metals and the relationships between various oxidative and nonoxidative transformations of alkynes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Merkushev, E.B. and Shvartsberg, M.S., Iodine Organic Compounds and Syntheses Based on Them: A Tutorial, Tomsk: Tomsk. Gos. Pedagog. Inst. im. Leninskogo Komsomola, 1978.

  2. Stang, P.J., Surber, B.W., Chen, Z.-C., Roberts, K.A., and Anderson A.G., Preparation and mechanism of formation of alkynyl tosylates and mesylates via tricoordinate iodonium species, J. Am. Chem. Soc., 1987, vol. 109, p. 228.

  3. Archer, E.M. and Van Schalkwyk, T.G.D., The crystal structure of benzene iododichloride, Acta Cryst., 1953, vol. 6, p. 88.

  4. Alcock, N.W., Countryman, R.M., Esperas, S., and Sawyer, J.F., Secondary bonding. Part 5.l. The crystal and molecular structures of phenyliodine(III) diacetate and bis(dichloroacetate), JCS Dalton Trans., 1979, p. 854.

REFERENCES

  1. Temkin, O.N., “Golden Age” of homogeneous catalysis chemistry of alkynes: Dimerization and oligomerization of alkynes, Kinet. Catal., 2019, vol. 60, p. 689.

    Article  CAS  Google Scholar 

  2. Temkin, O.N. and Bruk, L.G., The use of the concept of “oxidation state of an atom” and electronic balances in redox processes in organic and organoelement chemistry, Ross. Khim. Zh. (Zh. Ros. Khim. o-va im. D.I. Mendeleeva), 2014, vol. 58, nos. 5–6, p. 90.

  3. Modern Alkyne Chemistry. Catalytic and Atom-Economic Transformations, Trost, B.M. and Li, Ch.-J., Eds., Weinheim: Wiley-VCH, 2015.

  4. Stefanj, H.A., Guarezemini, A.S., and Cella, R., Tetrahedron, 2010, p. 7871.

  5. Kotlyarovskii, I.L., Shvartsberg, M.S., and Fisher, L.B., in Reaktsii atsetilenovykh soedinenii (Reactions of acetylenic compounds), Novosibirsk: Nauka, 1967, p. 173.

  6. Temkin, O.N. and Flid, R.M., Kataliticheskie prevrashcheniya atsetilenovykh soedinenii v rastvorakh kompleksov metallov (Catalytic Transformations of Acetylenic Compounds in Solutions of Metal Complexes), Moscow: Nauka, 1968.

  7. Temkin, O.N., Shestakov, G.K., and Treger, Yu.A., Atsetilen. Khimiya. Mekhanizmy reaktsii. Tekhnologiya (Acetylene. Chemistry. Reaction Mechanisms. Technology), Moscow: Khimiya, 1991.

  8. Lu, W. and Zhou, L., Oxidation of C–H Bonds, Wiley and Sons, 2017, ch. 8, p. 209.

    Book  Google Scholar 

  9. Friis, S.D., Pirnot, M.T., Dupuis, L.N., and Buchwald, S.L., Angew. Chem., Int. Ed., 2017, vol. 56, p. 7242.

    Article  CAS  Google Scholar 

  10. Kudryavtsev, Yu.P., Sladkov, A.M., Aseev, Yu.G., Nedoshivin, Yu.N., Kasatochkin, V.I., and Korshak, V.V., Dokl. Akad. Nauk SSSR, 1964, vol. 158, p. 389.

    CAS  Google Scholar 

  11. Eglinton, G. and Mc Grae, W., Advances in Organic Chemistry. Methods and Results, 1963, vol. 4, p. 225.

    Google Scholar 

  12. Sondheimer, F., Pure Appl. Chem., 1963, vol. 7, p. 363.

    Article  CAS  Google Scholar 

  13. Bohlmann, F., in Chemistry of Acetylenes, Viehe, H.G., Ed., New York: M. Dekker, 1969, ch. 14, p. 977.

    Google Scholar 

  14. Siemsen, P., Livingston, R.C., and Diederich, F., Angew. Chem., Int. Ed., 2000, vol. 19, p. 2632.

    Article  Google Scholar 

  15. Acetylene Chemistry: Chemistry, Biology, and Material Science, Diederich, F., Stang, P.J., and Tykwinski, R.R., Eds., Weinheim: Wiley-VCH, 2005.

    Google Scholar 

  16. Allen, S.E., Walvood, R.R., Padilla-Salinas, R., and Kozlowcki, M., Chem. Rev., 2013, vol. 113, p. 6234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zal’kind, Yu.S. and Fundyler, B.M., Zh. Org. Khim., 1936, vol. 6, p. 530.

    Google Scholar 

  18. Zal’kind, Yu.S. and Aizikovich, M.A., Zh. Org. Khim., 1937, vol. 7, p. 227.

    Google Scholar 

  19. Zal’kind, Yu.S. and Fundyler, B.M., Zh. Org. Khim., 1939, vol. 9, p. 1725.

    Google Scholar 

  20. Straus, F., Justus Liebigs Annalen der Chemie, 1905, vol. 342, no. 5, p. 190.

    Article  Google Scholar 

  21. Akhtar, F., Richards, T.A., and Weedon, B.C.L., J. Chem. Soc., 1959, p. 933.

  22. Balcioglu, N., Uraz, I., Bozkunt, C., and Sevin, F., Polyhedron, 1997, vol. 16, no. 2, p. 327.

    Article  Google Scholar 

  23. Salkind, J.S. and Fundyler, B.M., Chem. Berichte, 1936, vol. 69, p. 128.

    Article  Google Scholar 

  24. Zal’kind, Yu.S. and Gverdtsiteli, I.M., Zh. Org. Khim., 1939, vol. 9, p. 971.

    Google Scholar 

  25. Bowden, K., Heilbron, I., Jones, E.R.H., and Sargent, K.H., J. Chem. Soc., 1947, p. 1579.

  26. Heilbron, I., Jones, E.R.H., and Sondheimer, F., J. Chem. Soc., 1947, p. 1586.

  27. Zal’kind, Yu.S. and Kolyaskina, Z.N., Zh. Org. Khim., 1952, vol. 22, p. 2148.

    Google Scholar 

  28. Mkryan, G.M. and Papazyan, M.A., Dokl. Akad. Nauk Arm. SSR, 1953, vol. 16, p. 17.

    CAS  Google Scholar 

  29. Bohlmann, F. and Viehe, H.G., Chem. Berichte, 1954, vol. 87, p. 712.

    Article  CAS  Google Scholar 

  30. Klebanskii, A.L., Grachev, I.V., and Kuznetsova, O.M., Zh. Org. Khim., 1957, vol. 27, p. 2977.

    CAS  Google Scholar 

  31. Bennett, E.G., Org. Chem., 1957, vol. 22, p. 557.

    Article  Google Scholar 

  32. Copenhaver, J.W. and Bigelow, M.H., Acetylene and Carbon Monoxide Chemistry, New York: Reinhold, 1949, p. 121.

    Google Scholar 

  33. Reppe, W., Justus Liebigs Annalen der Chemie, 1955, vol. 596, p. 51.

    Google Scholar 

  34. Franke, W. and Meister, H., US Patent 2796442, 1957.

  35. Hay, A.S., Org. Chem., 1960, vol. 25, p. 1275.

    Article  CAS  Google Scholar 

  36. Hay, A.S., Org. Chem., 1962, vol. 27, p. 3320.

    Article  CAS  Google Scholar 

  37. Eglinton, G. and Galbraith, A.R., Chem. Ind., 1956, p. 737.

  38. Eglinton, G. and Galbraith, A.R., J. Chem. Soc., 1959, p. 889.

  39. Sondheimer, F. and Amiel, Y.J., J. Am. Chem. Soc., 1956, vol. 78, p. 4178.

    Article  CAS  Google Scholar 

  40. Sondheimer, F. and Amiel, Y., J. Am. Chem. Soc., 1957, vol. 79, p. 5817.

    Article  CAS  Google Scholar 

  41. Sondheimer, F., Amiel, Y.J., and Wolovsky, R.J., J. Am. Chem. Soc., 1957, vol. 79, p. 6263.

    Article  CAS  Google Scholar 

  42. Sondheimer, F., Wolovsky, R., and Ben-Efraim, D.A., J. Am. Chem. Soc., 1961, vol. 83, p. 1686.

    Article  CAS  Google Scholar 

  43. Sondheimer, F. and Wolovsky, R.J., J. Am. Chem. Soc., 1962, vol. 84, p. 260.

    Article  CAS  Google Scholar 

  44. Yadav, J.S., Reddy, B.V.S., Reddy, K.B., Uma, K., and Prasad, A.R., Tetrahedron Lett., 2003, vol. 44, p. 6493.

    Article  CAS  Google Scholar 

  45. Li, Y.-N., Wang, J.-L., and He, L.-N., Tetrahedron Lett., 2011, vol. 52, p. 3485.

    Article  CAS  Google Scholar 

  46. Wang, D., Li, J., Gao, T., Hou, S., and Chen, B., Green Chem., 2010, vol. 12, p. 45.

    Article  CAS  Google Scholar 

  47. Adimurthy, S., Chandi, C., Malakar, C.C., and Beifuss, U., Org. Chem., 2009, vol. 74, p. 5648.

    Article  CAS  Google Scholar 

  48. Zhu, M., Jin, J.C., and Tong, J.Y., J. Chem. Res., 2008, no. 4, p. 218.

  49. Alcaide, B., Almendros, P., Carrascosa, R., and Rodriguez-Acehes, R., Eur. J. Org. Chem., 2008, p. 1375.

  50. Balaraman, K. and Kesavan, V., Synthesis, 2010, no. 20, p. 3461.

  51. Bedard, A.-C. and Collins, S.K., J. Am. Chem. Soc., 2011, vol. 133, p. 19976.

    Article  CAS  PubMed  Google Scholar 

  52. Bedard, A.-C. and Collins, S.K., Chem. Commun., 2012, vol. 48, p. 6420.

    Article  CAS  Google Scholar 

  53. Godin, E., Bedard, A.-C., Raymond, M., and Collins, S.K., Org. Chem., 2017, vol. 82, p. 7576.

    Article  CAS  Google Scholar 

  54. Clifford, O.A. and Waters, W., J. Chem. Soc., 1963, p. 3056.

  55. Bohlmann, F., Schonowsky, H., Inhoffen, E., and Grau, G., Chem. Berichte, 1964, vol. 97, p. 94.

    Google Scholar 

  56. Fedenok, L.G., Berdnikov, V.M., and Shvartsberg, M.S., Zh. Org. Khim., 1973, vol. 9, p. 1781.

    CAS  Google Scholar 

  57. Fedenok, L.G., Berdnikov, V.M., and Shvartsberg, M.S., Zh. Org. Khim., 1975, vol. 11, p. 2492.

    CAS  Google Scholar 

  58. Fedenok, L.G., Berdnikov, V.M., and Shvartsberg, M.S., Zh. Org. Khim., 1974, vol. 10, p. 922.

    CAS  Google Scholar 

  59. Fedenok, L.G., Berdnikov, V.M., and Shvartsberg, M.S., Zh. Org. Khim., 1976, vol. 12, p. 1395.

    CAS  Google Scholar 

  60. Fedenok, L.G., Berdnikov, V.M., and Shvartsberg, M.S., Zh. Org. Khim., 1978, vol. 14, p. 1425.

    Google Scholar 

  61. Fedenok, L.G., Berdnikov, V.M., and Shvartsberg, M.S., Zh. Org. Khim., 1978, vol. 14, p. 1429.

    CAS  Google Scholar 

  62. Fedenok, L.G., Mechanism and synthetic possibilities of some reactions of acetylenic compounds, Doctor Sci. (Chem.) Dissertation, Novosibirsk: Inst. Khim. Kinet. Goreniya SO RAN, 2008.

  63. Fedenok, L.G. and Shvartsberg, M.S., Tetrahedron Lett., vol. 52, p. 3776.

  64. Tolman, W.B., Acc. Chem. Res., 1997, vol. 30, p. 227.

    Article  CAS  Google Scholar 

  65. Holland, P. and Tolman, W.B., Coord. Chem. Rev., 1999, vols. 190–192, p. 855.

  66. Khoan, Kh.M., Physical and chemical foundations of the catalytic synthesis of dialkynes, Cand. Sci. (Chem.) Dissertation, Moscow: Mosk. Inst. Tonkoi Khim. Teknol., 1990.

  67. Khoan, Kh.M., Brailovskii, S.M., and Temkin, O.N., Kinet. Katal., 1994, vol. 35, no. 2, p. 266.

    Google Scholar 

  68. Khoan, Kh.M., Brailovskii, S.M., and Temkin, O.N., Kinet. Katal., 1994, vol. 35, no. 3, p. 367.

    Google Scholar 

  69. Sladkov, A.M., Gol’ding, I.R., Usp. Khim., 1979, vol. 10, no. 9, p. 1625.

    Google Scholar 

  70. Temkin, O.N., Homogeneous Catalysis with Metal Complexes. Kinetic Aspects and Mechanisms, Wiley, 2012.

    Book  Google Scholar 

  71. Mykhalichko, B.M., Temkin, O.N., and Mys’kiv, M.G., Usp. Khim., 2000, vol. 69, no. 11, p. 1042.

    Article  Google Scholar 

  72. Mc Connell, H.M. and Davidson, H., J. Am. Chem. Soc., 1950, vol. 72, no. 7, p. 3168.

    Article  CAS  Google Scholar 

  73. Mc Connell, H.M. and Weaver, H.E., J. Chem. Phys., 1956, vol. 25, no. 2, p. 304.

    Google Scholar 

  74. Wilson, E.E., Oliver, A.G., Hughes, R.P., and Ashfeld, B.L., Organometallics, 2011, vol. 30, p. 5214.

    Article  CAS  Google Scholar 

  75. Secutowski, D.G. and Stucky, G.D., J. Am. Chem. Soc., 1976, vol. 98, p. 1376.

    Article  Google Scholar 

  76. Erker, G., Angew. Chem., 1986, vol. 98, p. 456.

    Article  CAS  Google Scholar 

  77. Rosenthal, U. and Görls, H., J. Organomet. Chem., 1992, vol. 439, p. C36.

    Article  CAS  Google Scholar 

  78. Rosenthal, U., Ohff, A., Tillack, A., and Baumann, W., J. Organomet. Chem., 1994, vol. 468, p. C4.

    Article  Google Scholar 

  79. Pellny, P.-M., Burlakov, V.V., Peulecke, N., Spannenberg, A., Kempe, R., and Rosenthal, U., J. Organomet. Chem., 1999, vol. 578, p. 135.

    Article  Google Scholar 

  80. Burlakov, V.V., Acetylene complexes of metallocenes of group IV B (4), Doctor Sci. (Chem.) Dissertation, Moscow: INEOS im. A.N. Nesmeyanova, 2012.

  81. Wendlandt, A.E., Suess, A.M., and Stahl, S.S., Angew. Chem., Int. Ed., 2011, vol. 50, p. 11062.

    Article  CAS  Google Scholar 

  82. Rosenthal, U., Ohff, A., Baumann, W., Kempe, R., Tillack, A., and Burlakov, V.V., Organometallics, 1994, vol. 13, p. 2903.

    Article  CAS  Google Scholar 

  83. Rosenthal, U., Pubst, S., Arndt, P., Ohff, A., Tillack, A., Baumann, W., Kempe, R., and Burlakov, V.V., Organometallics, 1995, vol. 14, p. 2961.

    Article  CAS  Google Scholar 

  84. Pubst, S., Arndt, P., Heller, B., Baumann, W., Kempe, R., and Rosenthal, U., Angew. Chem., Int. Ed., 1996, vol. 35, no. 10, p. 2454.

    Google Scholar 

  85. Heeres, H.J., Nijhoff, J., and Teuben, J.H., Organometallics, 1993, vol. 12, p. 2609.

    Article  CAS  Google Scholar 

  86. Choukroun, R. and Cassoux, P., Acc. Chem. Res., 1999, vol. 32, p. 494.

    Article  CAS  Google Scholar 

  87. Zhao, J., Zhang, S., Zhang, W.-X., and Xi, Z., Coord. Chem. Rev., 2014, vols. 270–271, p. 2.

  88. Lttenauer, M.S., Mobian, P., and Barloy, L., Coord. Chem. Rev., 2022, vol. 459, p. 214.

    Google Scholar 

  89. Evans, W.J., Keyer, P.A., and Ziller, J.W., Organometallics, 1993, vol. 12, no. 7, p. 2618.

    Article  CAS  Google Scholar 

  90. Khoan, Kh.M., Brailovskii, S.M., and Temkin, O.N., Kinet. Katal., 1994, vol. 35, no. 6, p. 889.

    Google Scholar 

  91. Coates, G.E. and Parkin, C., J. Inorg. Nucl. Chem., 1961, vol. 22, p. 59.

    Article  CAS  Google Scholar 

  92. Corfield, P.W.R. and Shearer, H.M.M., Abst. Am. Cryst. Assoc. Meeting. Bozeman. Mont., 1964, p. 96.

  93. Blake, D., Calvin, G., and Coates, G.E., Proc. Chem. Soc., 1959, p. 396.

  94. Organocopper Compounds, Gmelin Handbook of Inorganic Chemistry, 8th ed., Berlin: Springer, 1986, vol. 60, p. 3.

  95. Bedford, R.R., Hill, A.F., Thompsett, A.R., White, A.J.P., and Williams, D.J., Chem. Commun., 1996, p. 1059.

  96. Collman, J.P. and Kang, J.W., J. Am. Chem. Soc., 1967, vol. 89, p. 844.

    Article  CAS  Google Scholar 

  97. Nast, R. and Pfab, W., Chem. Berichte, 1956, vol. 89, p. 415.

    Article  CAS  Google Scholar 

  98. Negishi, E., J. Am. Chem. Soc., 1991, vol. 113, p. 1440.

    Article  Google Scholar 

  99. Kamata, K., Yamaguchi, S., Kotani, H., Yamaguchi, K., and Mizuno, N., Angew. Chem., Int. Ed., 2008, vol. 47, p. 2407.

    Article  CAS  Google Scholar 

  100. Yamaguchi, K., Kamata, K., Yamaguchi, S., Kotani, H., and Mizuno, N.J., J. Catal., 2008, vol. 258, p. 121.

    Article  CAS  Google Scholar 

  101. Milane, P., Duboc, C., Marrot, J., Riviere, E., Dolberg, A., and Secheresse, E., Chem. Eur. J., 2006, vol. 12, p. 1950.

    Article  Google Scholar 

  102. Chaudhuri, P. and Wieghardt, K., Prog. Inorg. Chem., 1987, vol. 35, p. 330.

    Google Scholar 

  103. Fomina, L., Vazquez, B., Tkatchouk, E., and Fomine, S., Tetrahedron, 2002, vol. 58, p. 6741.

    Article  CAS  Google Scholar 

  104. Efremov, G.E., Bovyrina, E.A., Katsman, E.A., Shamsiev, R.S., and Temkin, O.N., Izv. Akad. Nauk, Ser. Khim., 2019, no. 7, p. 1366.

  105. Vilhelmsen, M.H., Jensen, J., Tortzen, C.G., and Nilsen, M.B., Eur. J. Org. Chem., 2013, p. 701.

  106. Heck, R.F., J. Am. Chem. Soc., 1968, vol. 90, p. 5518.

    Article  CAS  Google Scholar 

  107. Heck, R.F., J. Am. Chem. Soc., 1968, vol. 90, p. 5526.

    Article  CAS  Google Scholar 

  108. Heck, R.F., J. Am. Chem. Soc., 1968, vol. 90, p. 5531.

    Article  CAS  Google Scholar 

  109. Heck, R.F., J. Am. Chem. Soc., 1968, vol. 90, p. 5535.

    Article  CAS  Google Scholar 

  110. Heck, R.F., J. Am. Chem. Soc., 1968, vol. 90, p. 5538.

    Article  CAS  Google Scholar 

  111. Heck, R.F., J. Am. Chem. Soc., 1968, vol. 90, p. 5542.

    Article  CAS  Google Scholar 

  112. Heck, R.F., J. Am. Chem. Soc., 1968, vol. 90, p. 5546.

    Article  CAS  Google Scholar 

  113. Heck, R.F., J. Am. Chem. Soc., 1969, vol. 91, p. 6707.

    Article  CAS  Google Scholar 

  114. Temkin, O.N., Kaliya, O.L., Shestakov, G.K., and Flid, R.M., Dokl. Akad. Nauk SSSR, 1970, vol. 190, p. 398.

    CAS  Google Scholar 

  115. Heck, R.F., J. Am. Chem. Soc., 1972, vol. 94, p. 2712.

    Article  CAS  Google Scholar 

  116. Heck, R.F. and Nolley, J.P., Org. Chem., 1972, vol. 37, p. 2320.

    Article  CAS  Google Scholar 

  117. Dieck, H.A. and Heck, R.F., J. Am. Chem. Soc., 1974, vol. 96, p. 1133.

    Article  CAS  Google Scholar 

  118. Mizoroki, T., Mori, K., and Ozaki, A., Bull. Chem. Soc. Jpn., 1971, vol. 44, p. 581.

    Article  CAS  Google Scholar 

  119. Kaliya, O.L., Temkin, O.N., Kirchenkova, G.S., Smirnova, E.M., Kimel’fel’d, L.M., and Flid, R.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1969, p. 2854.

  120. Kaliya, O.L., Kirchenkova, G.S., and Temkin, O.N., Kinet. Katal., 1969, vol. 10, p. 1186.

    CAS  Google Scholar 

  121. Temkin, O.N., Kaliya, O.L., Shestakov, G.K., Brailovskii, S.M., Flid, R.M., and Aseeva, A.P., Kinet. Katal., 1970, vol. 11, p. 1592.

    CAS  Google Scholar 

  122. Cassar, L., J. Organomet. Chem., 1975, vol. 93, p. 253.

    Article  CAS  Google Scholar 

  123. Diek, H.A. and Heck, R.F., J. Organomet. Chem., 1975, vol. 93, p. 259.

    Article  Google Scholar 

  124. Sonogashira, K., Tohda, Y., and Hagihara, N., Tetrahedron Lett., 1975, no. 50, p. 4467.

  125. Rossi, R., Carpita, A., Quirici, M.G., and Gandenzi, M.L., Tetrahedron, 1982, vol. 38, p. 631.

    Article  CAS  Google Scholar 

  126. Liu, Q. and Burton, D.J., Tetrahedron Lett., 1997, vol. 38, no. 25, p. 4371.

    Article  CAS  Google Scholar 

  127. Vlassa, M., Ciocan-Tarta, I., Margineanu, F., and Oprean, I., Tetrahedron, 1996, vol. 54, no. 4, p. 1337.

    Article  Google Scholar 

  128. Cho, D.H., Lee, J.H., and Kim, B.H., Org. Chem., 1999, vol. 64, p. 8048.

    Article  CAS  Google Scholar 

  129. Fairlamb, I.J.S., Bäuerlein, P.S., Marrison, L.R., and Dickinson, J.M., Chem. Commun., 2003, p. 632.

  130. Batsanov, A.S., Collings, J.C., Fairlamb, I.J.S., Holland, J.P., Howard, A.K., Liu, Z., Mard, T.R., Parsons, A.C., Ward, R.M., and Zhu, J., Org. Chem., 2005, vol. 70, p. 703.

    Article  CAS  Google Scholar 

  131. Mc Glacken, G.P. and Fairlamb, I.J.S., Eur. J. Org. Chem., 2009, p. 4011.

  132. Li, J.-H., Liang, Y., and Zhang, X.-D., Tetrahedron, 2005, vol. 61, p. 1903.

    Article  CAS  Google Scholar 

  133. Yin, W., He, C., Chen, M., Zhang, H., and Lei, A., Org. Lett., 2009, vol. 11, no. 3, p. 709.

    Article  CAS  PubMed  Google Scholar 

  134. Berry, D.H. and Eisenberg, R., Organometallics, 1987, vol. 6, p. 1796.

    Article  CAS  Google Scholar 

  135. Afzal, D., Lenhert, P.G., and Lukenhart, C.M., J. Am. Chem. Soc., 1984, vol. 106, p. 3050.

    Article  CAS  Google Scholar 

  136. Gonzalez-Arellano, C., Abad, A., Corma, A., Garsia, H., Iglesias, M., and Sanchez, F., Angew. Chem., Int. Ed., 2007, vol. 46, p. 1536.

    Article  CAS  Google Scholar 

  137. Plenio, H., Angew. Chem., Int. Ed., 2008, vol. 47, p. 6954.

    Article  CAS  Google Scholar 

  138. Gonzalez-Arellano, C., Corma, A., Iglesias, M., and Sanchez, F., Eur. J. Inorg. Chem., 2008, p. 1107.

  139. Li, P., Wang, L., Wang, M., and You, F., Eur. J. Org. Chem., 2008, p. 5946.

  140. Hopkinson, M.N., Ross, J.E., Gluffredi, G.T., Gee, A.D., and Gouverneur, V., Org. Lett., 2010, vol. 12, no. 21, p. 4904.

    Article  CAS  PubMed  Google Scholar 

  141. Wegner, H.A. and Auzias, M., Angew. Chem., Int. Ed., 2011, vol. 50, p. 8236.

    Article  CAS  Google Scholar 

  142. Leyva-Perez, A., Domenech, A., Al-Resayes, S.I., and Corma, A., ACS Catal., 2012, vol. 3, p. 121.

    Article  Google Scholar 

  143. Peng, H., Xi, Y., Ronagi, N., Dong, B., Akhmedov, N.G., and Shi, X., J. Am. Chem. Soc., 2014, vol. 136, p. 13174.

    Article  CAS  PubMed  Google Scholar 

  144. Leyva-Perez, A., Domenech-Carbo, A., and Corma, A., Nat. Commun., 2015, vol. 6, p. 6703.

    Article  CAS  PubMed  Google Scholar 

  145. Ye, X., Peng, H., Wei, C., Yuan, T., Wojtas, L., and Shi, X., Chemistry, 2018, vol. 1983.

  146. Beaumont, S.K., Kyriakou, G., and Lambert, R.M., J. Am. Chem. Soc., 2010, vol. 132, no. 35, p. 12246.

    Article  CAS  PubMed  Google Scholar 

  147. Boronat, M., Combita, D., Concepcion, P., Corma, A., Hermenegildo Garcia, H., Juarez, R., Laursen, S., and De Dios Lopez-Castro, J., J. Phys. Chem. C, 2012, vol. 116, p. 24855.

    Article  CAS  Google Scholar 

  148. Boronat, M., Laursen, S., Leyva-Perez, A., Oliver-Meseguer, J., Combita, D., and Corma, A., J. Catal., 2014, vol. 315, p. 6.

    Article  CAS  Google Scholar 

  149. Vulhanova, B., Vaclavik, J., Artiglia, L., Ranocchiari, M., Togni, A., and Van Bokhoven, J.A., ACS Catal., 2017, no. 7, p. 3414.

  150. Chen, Z., Shen, R., Chen, C., Li, J., and Li, Y., Chem. Commun., 2018, vol. 54, p. 13155.

    Article  CAS  Google Scholar 

  151. Cadio, P. and Chodkiewicz, W., in Chemistry of Acetylenes, Viehe, H.G., Ed., New York: M. Dekker, 1969, p. 597.

    Google Scholar 

  152. Bruk, L.G., Brailovskii, S.M., Temkin, O.N., Flid, R.M., and Kostyushin, A.S., Zh. Org. Khim., 1974, vol. 10, no. 11, p. 2262.

    CAS  Google Scholar 

  153. Shchel’tsyn, L.V., Brailovskii, S.M., Murugova, U.Yu., and Temkin, O.N., Kinet. Katal., 1988, vol. 29, no. 5, p. 1044.

    Google Scholar 

  154. Shchel’tsyn, L.V., Brailovskii, S.M., and Temkin, O.N., Kinet. Katal., 1990, vol. 31, no. 6, p. 1361.

    Google Scholar 

  155. Wityak, J. and Chan, J.B., Synth. Commun., 1991, vol. 21, p. 977.

    Article  CAS  Google Scholar 

  156. Elbaum, D., Nguyen, T.B., Jorgensen, W.L., and Schreiber, S.L., Tetrahedron, 1994, vol. 50, p. 1503.

    Article  CAS  Google Scholar 

  157. Cai, C. and Vasella, A., Helv. Chim. Acta, 1995, vol. 78, p. 2053.

    Article  CAS  Google Scholar 

  158. Damie, S.V., Seomoon, D., and Lee, P.H., Org. Chem., 2003, vol. 68, p. 7085.

    Article  Google Scholar 

  159. Lefevre, G., Franc, G., Tlili, A., Adamo, G., Taillefer, M., Ciofini, I., and Jutand, A., Organometallics, 2012, vol. 31, no. 22, p. 7694.

    Article  CAS  Google Scholar 

  160. Weng, Y., Cheng, B., He, C., and Lei, A., Angew. Chem., Int. Ed., 2012, vol. 51, no. 38, p. 9547.

    Article  CAS  Google Scholar 

  161. Amatore, K., Blart, E., Genet, J.P., Jutand, A., Lenaire-Audoire, S., and Savignac, M., Org. Chem., 1995, vol. 60, p. P. 6829.

  162. Banerjee, S. and Patil, N.T., Chem. Commun., 2017, vol. 53, p. 7937.

    Article  CAS  Google Scholar 

  163. Li, Y., Xie, X., Sun, N., and Liu, Y., Angew. Chem., Int. Ed., 2017, vol. 56, p. 6994.

    Article  CAS  Google Scholar 

  164. Liu, Y., Yang, Y., Zhu, R., Liu, C., and Zhang, D., Catal. Sci. Technol., 2019, vol. 9, no. 15, p. 4091.

    Article  CAS  Google Scholar 

  165. Deprez, N.R. and Sanford, M.S., Inorg. Chem., 2007, vol. 48, p. 1924.

    Article  Google Scholar 

  166. Sonogashira, K., in Metal-Catalyzed Cross-coupling Reactions, Diederich, F. and Stang, P.J., Eds., Weinheim: Wiley-VCH, 1998, p. 203.

    Google Scholar 

  167. Sonogashira, K., Alkynes synthesis, in Handbook of Organopalladium Chemistry for Organic Synthesis, Negishi E.-I., Ed., New York: Wiley, 2002, vol. 1, p. 493.

    Google Scholar 

  168. Chinchilla, R. and Najera, C., Chem. Rev., 2007, vol. 107, p. 874.

    Article  CAS  PubMed  Google Scholar 

  169. Chinchilla, R. and Najera, C., Chem. Soc. Rev., 2011, vol. 40, p. 5084.

    Article  CAS  PubMed  Google Scholar 

  170. Karak, M., Barbosa, L., and Hargaden, G.C., RSC Adv., 2014, vol. 4, p. 53442.

    Article  CAS  Google Scholar 

  171. Cacchi, S., Synthesis, 1986, p. 320.

  172. Balanta, A., Godard, C., and Claver, C., Chem. Soc. Rev., 2011, vol. 40, p. 4973.

    Article  CAS  PubMed  Google Scholar 

  173. Bumagin, N.A., Ponomarev, A.B., and Beletskaya, I.P., Izv. Akad. Nauk SSSR, Ser. Khim., 1984, no. 7, p. 1561.

  174. Gelman, D. and Buchwald, S.L., Angew. Chem., Int. Ed., 2003, vol. 2, p. 5991.

    Google Scholar 

  175. Beauperin, M., Job, A., Cattey, H., Royer, S., Meunier, P., and Hierso, J.-C., Organometallics, 2010, vol. 29, p. 2815.

    Article  CAS  Google Scholar 

  176. Okuro, K. and Furuune, M., Enna, M., Miura, M., and Nomura, M., Org. Chem., 1993, vol. 58, p. 4716.

    Article  CAS  Google Scholar 

  177. Kang, S.K., Yoon, S.-K., and Kim, Y.-M., Org. Lett., 2001, vol. 3, p. 2697.

    Article  CAS  PubMed  Google Scholar 

  178. Kollhofer, A. and Plenio, H., Adv. Synth. Catal., 2005, vol. 347, p. 1295.

    Article  Google Scholar 

  179. Negishi, E. and Anastasia, L., Chem. Rev., 2003, vol. 103, p. 1979.

    Article  CAS  PubMed  Google Scholar 

  180. Reina, A., Dang-Bao, T., Guerrero-Rios, I., and Gómez, M., Nanomaterials, 2021, vol. 11, p. 1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Farina, V., Krishnamurthy, V., and Scott, W.J., The Stille Reaction, New York: J. Wiley and Sons, 1998.

    Google Scholar 

  182. Milstein, D. and Stille, J.K., J. Am. Chem. Soc., 2007, vol. 129, p. 11340.

    Article  Google Scholar 

  183. Miyaura, N. and Suzuki, A., Chem. Commun., 1979, p. 866.

  184. Portnoy, M. and Milstein, D., Organometallics, 1994, vol. 13, p. 3465.

    Article  CAS  Google Scholar 

  185. Casado, A.L. and Espinet, P., Organometallics, 1998, vol. 17, no. 5, p. 954.

    Article  CAS  Google Scholar 

  186. Fitton, P. and Rick, E.A., J. Organomet. Chem., 1971, vol. 28, p. 287.

    Article  CAS  Google Scholar 

  187. Amatore, C. and Jutand, A., J. Organomet. Chem., 1999, vol. 576, p. 254.

    Article  CAS  Google Scholar 

  188. Amatore, C. and Jutand, A., Acc. Chem. Res., 2000, vol. 33, p. 314.

    Article  CAS  PubMed  Google Scholar 

  189. Beletskaya, I.P. and Cheprakov, A.V., Chem. Rev., 2000, vol. 100, p. 3009.

    Article  CAS  PubMed  Google Scholar 

  190. Kozuch, S. and Jutand, A., Organometallics, 2005, vol. 24, p. 2319.

    Article  CAS  Google Scholar 

  191. Barrios-Landeros, F. and Hartvig, J.F., J. Am. Chem. Soc., 2005, vol. 127, p. 6944.

    Article  CAS  PubMed  Google Scholar 

  192. Kozuch, S. and Shai, S., J. Am. Chem. Soc., 2006, vol. 128, p. 3355.

    Article  CAS  PubMed  Google Scholar 

  193. Tougerti, S. and Jutand, A., Chem. Eur. J., 2007, vol. 13, p. 666.

    Article  CAS  PubMed  Google Scholar 

  194. Hue, L. and Liu, Z., Chem. Soc. Rev., 2010, vol. 39, p. 1692.

    Article  Google Scholar 

  195. Heiden, M.R., Plenio, H., Immel, S., Burello, E., Ruthenberg, G., and Hoefsloot, H.C., Chem. Eur. J., 2008, vol. 14, p. 2857.

    Article  Google Scholar 

  196. Shekhar, S., Riberg, P., Hartwig, J.F., Mathiew, J.S., Blackmond, D.G., Strieter, E.R., and Buchwald, S.L., J. Am. Chem. Soc., 2006, vol. 128, p. 3584.

    Article  CAS  PubMed  Google Scholar 

  197. Hartwig, J.F., Inorg. Chem., 2007, vol. 46, p. 1936.

    Article  CAS  PubMed  Google Scholar 

  198. Osakada, K., Takisawa, T., and Yamamoto, T., Organometallics, 1995, vol. 14, p. 3531.

    Article  CAS  Google Scholar 

  199. Nova, A., Ujaque, G., Maseros, F., Ledos, A., and Espinet, P., J. Am. Chem. Soc., 2006, vol. 128, p. 14571.

  200. Jutand, A., Negri, S., and Principaud, A., Eur. J. Inorg. Chem., 2005, p. 631.

  201. Genet, J.P., Blart, E., and Savignac, M., Synlett, 1992, p. 715.

  202. Alami, M., Ferri, F., and Linstrumelle, G., Tetrahedron Lett., 1993, vol. 34, no. 40, p. 6403.

    Article  CAS  Google Scholar 

  203. Böhm, V.P.W. and Herrmann, W.A., Eur. J. Org. Chem., 2000, p. 3679.

  204. Mery, D., Heuze, K., and Astruc, D., Chem. Commun., 2003, p. 1934.

  205. Fukuyama, T., Shinmen, M., Nishitani, S., Sato, M., and Ryu, L., Org. Lett., 2002, vol. 4, no. 10, p. 1691.

    Article  CAS  PubMed  Google Scholar 

  206. Alonso, D.A., Najera, C., and Pacheco, C., Tetrahedron Lett., 2002, vol. 43, p. 9365.

    Article  CAS  Google Scholar 

  207. Leadbeater, N.E. and Tominack, B.J., Tetrahedron Lett., 2003, vol. 44, p. 8653.

    Article  CAS  Google Scholar 

  208. Urgaonkar, S. and Verkade, J.G., Org. Chem., 2004, vol. 69, p. 5752.

    Article  CAS  Google Scholar 

  209. Mori, A., Kawoshima, J., Shimada, T., Suguro, M., Hirabayashi, K., and Nishihara, Y., Org. Lett., 2000, vol. 2, no. 19, p. 2935.

    Article  CAS  PubMed  Google Scholar 

  210. Iranpoor, N., Firouzabadi, H., and Ahmadi, Y., Eur. J. Org. Chem., 2012, p. 305.

  211. Amatore, C., Bensalem, S., GHam, S., and Jutand, A., J. Organometall. Chem., 2004, vol. 689, p. 4642.

    Article  CAS  Google Scholar 

  212. Ljungdahl, T., Bennur, T., Dallas, A., Emtenas, H., and Matensson, J., Organometallics, 2008, vol. 27, p. 2490.

    Article  CAS  Google Scholar 

  213. Gacia-Meldhor, M., Pacheco, M.C., Najera, C., Ledos, A., and Ujaque, G., ACS Catal., 2012, vol. 2, p. 135.

    Article  Google Scholar 

  214. De Souza, R.O.M.A., Bittar, M.S., Mendes, L.V.P., and Da Silva, C.M.F., Synlett, 2008, no. 12, p. 1777.

  215. Kuriakou, G., Beaumont, S.K., Humphrey, S.M., Antonetti, C., and Lambert, R.M., ChemCatChem, 2010, vol. 2, p. 1444.

    Article  Google Scholar 

  216. Suomin, D. and Koel, B.E., Surf. Sci., 2001, vol. 490, p. 265.

    Article  Google Scholar 

  217. Kanuru, V., Kuriakow, G., Beaumont, S.K., Papageorgiu, A.C., Watson, D.J., and Lambert, R.M., J. Am. Chem. Soc., 2010, vol. 132, p. 8081.

    Article  CAS  PubMed  Google Scholar 

  218. Goguet, A., Ace, M., Saih, Y., Sa, J., Kavanagh, J., and Hardacre, C., Chem. Commun., 2009, p. 4889.

  219. Lauterbach, T., Livendahl, M., Rosellon, A., Espinet, P., and Echavarren, A.M., Org. Lett., 2010, vol. 12, no. 13, p. 3006.

    Article  CAS  PubMed  Google Scholar 

  220. Corma, A., Juarez, R., Boronat, M., Sanchez, F., Iglesias, M., and Garsia, H., Chem. Commun., 2011, vol. 47, p. 1446.

    Article  CAS  Google Scholar 

  221. Espinet, P. and Echavarren, A.M., Platinum Metals Rev., 2011, vol. 55, no. 3, p. 212.

    Article  Google Scholar 

  222. Leuva-Perez, A., Oliver-Meseguer, J., Cabrero-Antonio, J.P., Rubio-Marques, R., Serna, P., Al-Resayes, S.I., and Corma, A., ACS Catal., 2013, vol. 3, no. 8, p. 1865.

    Article  Google Scholar 

  223. Boronat, M., Lopes-Ausens, T., and Corma, A., J. Phys. Chem., 2014, vol. 118, no. 17, p. 9018.

    CAS  Google Scholar 

  224. Li, G. and Jiang, D., J. Catal., 2013, vol. 306, p. 177.

    Article  CAS  Google Scholar 

  225. Robinson, P.S.D. and Khairallah, G.K., Da Silva, G., Lioe, H., and O’Hair, R.A.J., Angew. Chem., Int. Ed., 2012, vol. 51, p. 3812.

    Article  CAS  Google Scholar 

  226. Nijamudheen, A. and Datta, A., J. Phys. Chem., 2013, vol. 117, p. 21433.

    Article  CAS  Google Scholar 

  227. Lin, J., Abroshan, H., Liu, C., Zhu, M., Li, G., and Haruta, M., J. Catal., 2015, vol. 330, p. 354.

    Article  CAS  Google Scholar 

  228. Johansson, N., Sisodiyas, S., Shyesteh, P., Chaudhary, S., Andersen, J.N., Knudsen, J., Wendt, O.F., and Schnadt, J., J. Phys. Condens. Matter, 2017, vol. 29, p. 444005.

    Article  CAS  PubMed  Google Scholar 

  229. Zeineddine, A., Estevez, L., Malet-Ladeira, S., Miquen, K., Amgoune, L., and Bourosson, D., Nat. Commun., 2017, vol. 8, no. 1, p. 565.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Jones, L.A., Sanz, S., and Laguna, M., Catal. Today, 2007, vol. 122, p. 403.

    Article  CAS  Google Scholar 

  231. Panda, B. and Sarkar, T.K., Tetrahedron Lett., 2010, vol. 51, p. 301.

    Article  CAS  Google Scholar 

  232. Panda, B. and Sarkar, T.K., Chem. Commun., 2010, vol. 46, p. 3131.

    Article  CAS  Google Scholar 

  233. Hashmi, A.S.K., Lothschutz, C., Dopp, R., Rudolph, M., Ramamurthi, T.D., and Rominger, F., Angew. Chem., 2009, vol. 48, no. 44, p. 8243.

    Article  CAS  Google Scholar 

  234. Liu, R., Chen, H., Fang, L., Xu, C., He, Z., Lai, Y., Zhao, H., Bekana, D., and Liu, J.-F., Environ. Sci. Technol., 2018, vol. 52, p. 4244.

    Article  CAS  PubMed  Google Scholar 

  235. Rossy, J., Majimel, J., Fouqeuet, E., Delacote, C., Boujita, M., Labrugere, C., Treguer-Dlapierre, M., and Felkin, F.-X., Chem. Eur. J., 2013, vol. 19, p. 14024.

    Article  CAS  PubMed  Google Scholar 

  236. Reina, A., Dang-Bao, T., Guerrero-Rios, I., and Gomez, M., Nanomaterials, 2021, vol. 11, p. 1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhu, M., Zhou, Z., and Chen, R., Synthesis, 2018, no. 17, p. 2680.

  238. Venkatesan, P. and Santhanalakshmi, J., Langmuir, 2010, vol. 26, no. 14, p. 12225.

    Article  CAS  PubMed  Google Scholar 

  239. Weibel, J.-M., Blanc, A., and Pale, P., Chem. Rev., 2008, vol. 108, p. 3149.

    Article  CAS  PubMed  Google Scholar 

  240. Li, P.H. and Wang, L., Synlett, 2006, p. 2261.

  241. Halbes-Letinois, H., Pale, P., and Berger, S., Org. Chem., 2005, vol. 70, p. 9185.

    Article  Google Scholar 

  242. Jeffery, T., JCS Chem. Commun., 1991, p. 324.

  243. Wu, H.-J., Hsu, H.-K., and Chiang, C.-M., J. Am. Chem. Soc., 1999, vol. 121, no. 18, p. 4433.

    Article  CAS  Google Scholar 

  244. Han, M., Liu, S., Nie, X., Yuan, D., Sun, P., Dai, Z., and Bao, J., RSC Adv., 2012, vol. 2, p. 6061.

    Article  CAS  Google Scholar 

  245. Sanches-Sanches, C., Orozco, N., Holgado, J.P., Beaumont, S.K., Kuriakou, G., Watson, D.J., Gonzalez-Elipe, A.R., Feria, L., Sanz, J.F., and Lambert, R.M., J. Am. Chem. Soc., 2015, vol. 137, p. 940.

    Article  Google Scholar 

  246. Bumagin, N.A., Kalinovskii, I.O., and Ponamorev, A.B., Izv. Akad. Nauk SSSR, Ser. Khim., 1986, no. 12, p. 2836.

  247. Beletskaya, I.P., Latyshev, G.V., Tsvetkov, A.V., and Lukashev, N.V., Tetrahedron Lett., 2003, vol. 44, p. 5011.

    Article  CAS  Google Scholar 

  248. Vechorkin, O., Barmaz, D., Pronst, V., and Hu, X., J. Am. Chem. Soc., 2009, vol. 131, p. 12078.

    Article  CAS  PubMed  Google Scholar 

  249. Son, S.U., Jang, Y., Park, J., Bin, N.H., Park, H.M., Yun, H.J., Lee, J., and Hueon, T., J. Am. Chem. Soc., 2004, vol. 126, p. 5026.

    Article  CAS  PubMed  Google Scholar 

  250. Feng, L., Liu, F., Sun, P., and Bao, J., Synlett, 2008, no. 9, p. 1415.

  251. Kanuru, V.K., Humphrey, S.M., Kyffi, J.M.W., Jefferson, D.A., Burton, J.W., Armbruster, M., and Lambert, R.M., Dalton Trans., 2009, p. 7602.

  252. Enthaler, S., Junge, K., and Beller, M., Angew. Chem., Int. Ed., 2008, vol. 47, p. 3317.

    Article  CAS  Google Scholar 

  253. Correa, A., Mancheno, O.G., and Bolm, C., Chem. Soc. Rev., 2008, vol. 37, p. 1108.

    Article  CAS  PubMed  Google Scholar 

  254. Bauer, I. and Knolker, H.J., Chem. Rev., 2015, vol. 115, pp. 3170–3387.

    Article  CAS  PubMed  Google Scholar 

  255. Carril, M., Correa, A., and Bolm, K., Angew. Chem., Int. Ed., 2008, vol. 47, p. 4862.

    Article  CAS  Google Scholar 

  256. Correa, A., Elmore, S., and Bolm, K., Chem. Eur. J., 2008, vol. 14, p. 3527.

    Article  CAS  PubMed  Google Scholar 

  257. Bistri, O., Correa, A., and Bolm, K., Angew. Chem., Int. Ed., 2008, vol. 47, no. 3, p. 596.

    Article  Google Scholar 

  258. Correa, A., Corril, M., and Bolm, K., Angew. Chem., Int. Ed., 2008, vol. 47, p. 2880.

    Article  CAS  Google Scholar 

  259. Xie, X., Xu, X., Li, H., Xu, Y., Yang, J., and Li, Y., Adv. Synth. Catal., 2009, vol. 351, p. 1263.

    Article  CAS  Google Scholar 

  260. Pan, C., Luo, F., Wang, W., Ye, Z., and Liu, M., J. Chem. Res., 2009, p. 478.

  261. Hung, T.-T., Huang, C.-M., and Tsai, F.-Y., ChemCatChem, 2012, vol. 4, p. 540.

    Article  CAS  Google Scholar 

  262. Yang, J., Shen, G., and Chen, D., Synth. Commun., 2013, vol. 43, p. 837.

    Article  CAS  Google Scholar 

  263. Gruber, M., Chouzier, S., Koehler, K., and Djakovitch, L., Appl. Catal. A: Chem., 2004, vol. 265, p. 161.

    Article  CAS  Google Scholar 

  264. Rao Volla, C.M. and Vogel, P., Tetrahedron Lett., 2008, vol. 49, p. 5961.

    Article  CAS  Google Scholar 

  265. Mao, J., Xie, G., Wu, M., Guo, J., and Li, S., Adv. Synth. Catal., vol. 350, p. 2477.

  266. Buchwald, S. and Bolm, C., Angew. Chem., Int. Ed., 2009, vol. 48, p. 5586.

    Article  CAS  Google Scholar 

  267. Larsson, P.-F., Correa, A., Carril, M., Norrby, P.-O., and Bolm, C., Angew. Chem., Int. Ed., 2009, vol. 48, p. 5691.

    Article  CAS  Google Scholar 

  268. Bedford, R.B., Nakamura, M., Gower, J., Haddow, M.F., Hall, M.A., Huwe, M., Hashimoto, T., and Okopie, R.A., Tetrahedron Lett., 2009, vol. 50, p. 6110.

    Article  CAS  Google Scholar 

  269. Savant, D.N., Tambade, J., Wagh, S., and Bhanage, B.M., Tetrahedron Lett., 2010, vol. 51, p. 2758.

    Article  Google Scholar 

  270. Hatakeyama, T., Yoshimoto, Y., Gabriel, T., and Nakamura, M., J. Org. Lett., 2008, vol. 10, no. 23, p. 5341.

    Article  CAS  Google Scholar 

  271. Berben, L.A. and Long, J.R., Inorg. Chem., 2005, vol. 44, no. 23, p. 8459.

    Article  CAS  PubMed  Google Scholar 

  272. Furstner, A., Nartin, R., Krause, H., Seidel, G., Goddard, R., and Lehman, C.W., J. Am. Chem. Soc., 2008, vol. 130, p. 8773.

    Article  PubMed  Google Scholar 

  273. Hatakeyama, T., Hashimoto, S., Ishizuka, K., and Nakamura, M., J. Am. Chem. Soc., 2009, vol. 131, p. 11949.

    Article  CAS  PubMed  Google Scholar 

  274. Firouzabadi, H., Iranpoor, N., Gholinejad, M., and Hoseini, J., Adv. Synth. Catal., 2011, vol. 353, p. 125.

    Article  CAS  Google Scholar 

  275. Park, S., Kim, M., Koo, D.H., and Cheng, S., Adv. Synth. Catal., 2004, vol. 346, p. 1638.

    Article  CAS  Google Scholar 

  276. Na, Y., Park, S., Han, S.B., Han, H., Ko, S., and Chang, S., J. Am. Chem. Soc., 2004, vol. 126, no. 1, p. 250.

    Article  CAS  PubMed  Google Scholar 

  277. Borah, H.N., Prajapati, D., and Boruah, R.C., Synlett, 2005, no. 18, p. 2823.

  278. Freiberg, M., Mulac, W.A., Schmidt, K.H., and Meyerstein, D., JCS Faraday I, 1980, vol. 76, p. 1838.

    Article  CAS  Google Scholar 

  279. Freiberg, M., Meyerstein, D., and Yamamoto, Y., JCS. Dalton Trans., 1982, p. 1137.

  280. Cohen, H. and Meyerstein, D., Inorg. Chem., 1986, vol. 25, p. 1505.

    Article  CAS  Google Scholar 

  281. Masarawa, M., Cohen, H., and Meyerstein, D., Inorg. Chem., 1986, vol. 25, p. 4897.

    Article  Google Scholar 

  282. Cohen, H. and Meyerstein, D., JCS Faraday I, 1988, vol. 84, no. 11, p. 4157.

    Article  CAS  Google Scholar 

  283. Masarawa, M., Cohen, H., Glaser, R., and Meyerstein, D., Inorg. Chem., 1990, vol. 24, p. 5031.

    Article  Google Scholar 

  284. Goldstein, S., Czapski, G., Cohen, H., and Meyerstein, D., Inorg. Chim. Acta, 1992, vol. 192, p. 87.

    Article  CAS  Google Scholar 

  285. Navon, X., Golub, G., Cohen, H., and Meyerstein, D., Organometallics, 1995, vol. 14, p. 5670.

    Article  CAS  Google Scholar 

  286. Szulc, A., Meyerstein, D., and Cohen, H., Inorg. Chim. Acta, 1998, vol. 270, p. 440.

    Article  CAS  Google Scholar 

  287. Epstein, D.M., Cohen, H., Masarawa, A., and Meyerstein, D., Inorg. Chim. Acta, 2002, vol. 339, p. 281.

    Google Scholar 

  288. Burg, A. and Meyerstein, D., in Inorganic/Bioinorganic Reaction Mechanisms, 2012, vol. 64, p. 220.

    Google Scholar 

  289. Yardent, G., Meyerstein, D., Kats, L., Cohen, H., Zilberman, I., and Maimon, E., J. Coord. Chem., 2019, vol. 72, nos. 22–24, p. 3445.

  290. Mykhalichko, I.M., Mys’kiv, M.G., and Davydov, V.N., Zh. Neorg. Khim., 1999, vol. 44, no. 1, p. 46.

    CAS  Google Scholar 

  291. Catalysis by Gold. Catalytic Science, Bond, G.C., Louis C., and Thompson, D.T., Eds., London: Imp. College Press, 2006, vol. 6.

    Google Scholar 

  292. Gorin, D.J., Toste, F.D., and Reina, A., Nature, 2007, vol. 446, p. 395.

    Article  CAS  PubMed  Google Scholar 

  293. Modern Gold Supramolecular Chemistry. Gold–Metal Interaction and Application, Laguna, A., Ed., Weinheim: Wiley-VCH, 2009.

    Google Scholar 

  294. Gold Chemistry: Applications and Future Directions in the Life Sciences, Mohr, F., Ed., Weinheim: Wiley-VCH, 2009, p. 408.

    Google Scholar 

  295. Soriano, E. and Marco-Conteeles, J., Top Curr. Chem., 2011, vol. 302, p. 1.

    Article  CAS  PubMed  Google Scholar 

  296. Zubanova, E.M., Reaction mechanisms of copper complexes with alkyl radicals, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Mosk. Gos. Univ. im. M.V. Lomonosova, 2015.

  297. Modern Gold Catalyzed Synthesis, Hashmi, A.S.K. and Toste, F.D., Eds., Weinheim: Wiley-VCH, 2012.

    Google Scholar 

  298. Zang, L., Acc. Chem. Res., 2014, vol. 47, no. 3, p. 877.

    Article  Google Scholar 

  299. Rosca, D.-A., Fernandez-Cestau, J., Huges, D.-L., and Bohmann, M., Organometallics, 2015, vol. 34, no. 11, p. 2098.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank K. Egiazaryan, graduate student, Chair of Physical Chemistry, MIREA—Russian Technological University, Moscow, Russia, for his invaluable help in preparing this review; Dr. L.G. Fedenok for very useful discussions concerning the mechanisms of the OD reaction; Professor O.L. Kalija and Professor L.G. Bruk for valuable advice on the content and structure of the review.

Funding

No support was received for the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Temkin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Abbreviations and notation: EDA, ethylenediamine; TMEDA, tetramethylethylenediamine; THF, tetrahydrofuran; MA, methylacetylene; DMDA, dimethyldiacetylene; CMA, chloromethylacetylene; DA, diacetylene; MDA, methyldiacetylene; DCE, dichloroethylene; PEG, polyethylene glycol; BMA, bromomethylacetylene; CMA, copper methylacetylide; TBA, tetrabutylamine; DMF, dimethylformamide; EG, ethylene glycol; Py, pyridine; PiPy, piperidine; DiPy, dipyridyl; AN, acetonitrile; Phen, phenanthrene; BMIM, butylmethylimidazole; dba, dibenzylideneacetone; hal, halides; dppm, 1,2-bis(diphenylphosphino)methane; dppp, 1,2-bis(diphenylphosphino)propane; dppe, 1,2-bis(diphenylphosphino)ethane; dppf, 1,1-bis(diphenylphosphino)ferrocene; BINAP, bis(naphthyldiphenylphosphine); Xantophos, 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene; TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl; TMEDA, tetramethylethylenediamine; TMED, tetramethylethylenediamine; DME, dimethyl ether; DMED, dimethylethylenediamine; NMP, N-methyl-2-pyrrolidone; dipy, dipyridyl; NHC, N-heterocyclic carbene; HX, acids; D, optical density; POCC, polyfunctional oxygen-containing compounds; NMR, nuclear magnetic resonance; OS, oxidation state; ORR, redox reactions; OD, oxidative dehydrocondensation of alkynes (coupling); B, base; NC, nanocluster; NP, nanoparticle; OA, oxidative addition; TM, transmetalation; RE, reductive elimination; rt, room temperature; TOF, turnover frequency of catalyst; TON, turnover number of catalyst; EDG, electron donating group; EWG, electron withdrawing group; KIE, kinetic isotope effect; IL, ionic liquids; RDS, rate-determining step; TPR, temperature-programmed reaction; CSI-MS, cold-spray ionization mass spectrometry; STM, scanning tunneling microscopy; ESI-MS, electrospray ionization mass spectrometry; CID, collision-induced dissociation; XPS, X-ray photoelectron spectroscopy; HR TEM, high-resolution transmission electron microscopy, FE SEM, field emission scanning electron microscopy; STM, scanning tunneling microscopy; DFT, density functional theory; XRD, X-ray powder diffraction analysis; and ICP-ES, inductively coupled plasma emission spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temkin, O.N. “Golden Age” of Homogeneous Catalytic Chemistry of Alkynes: Some Oxidative Transformations of Alkynes (A Review). Kinet Catal 64, 521–577 (2023). https://doi.org/10.1134/S0023158423050117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423050117

Keywords:

Navigation