Skip to main content
Log in

Biologically Active Palladium(II), Zinc(II), and Copper(II) Complexes with Terpene Ligands as Potential Pharmaceutical Drugs

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

A final review of the results of studies of versatile biological activities (in vitro) of chiral metal complexes with benzylamine and ethylenediamine derivatives of terpenes is presented. The cytotoxic profiles of palladacycles containing a Pd–C bond and palladium and zinc chelate complexes were determined. For a number of compounds, the possible mechanisms of potential anticancer action were analyzed, such as modulation of mitochondrial functioning and effect on the parameters of glycolytic function of tumor cells. The antibacterial and antifungal activities of palladium complexes of different types and copper chelate complexes were investigated. A correlation between high antimicrobial activity and antioxidant properties was found for a number of copper complexes. The material is supplemented by an extended analysis of publications in relevant subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Medina-Franco, J.L., Lopez-Lopez, E., Andrade, E., et al., Drug Discov. Today, 2022, vol. 27, p. 1420. https://doi.org/10.1016/j.drudis.2022.02.021

    Article  CAS  PubMed  Google Scholar 

  2. Miranda, V.M., Rev. Inorg. Chem., 2022, vol. 42, p. 29. https://doi.org/10.1515/revic-2020-0030

    Article  CAS  Google Scholar 

  3. Mjos, K.D. and Orvig, C., Chem. Rev., 2014, vol. 114, p. 4540. https://doi.org/10.1021/cr400460s

    Article  CAS  PubMed  Google Scholar 

  4. Binding, Transport and Storage of Metal Ions in Biological Cells, Maret, W. and Wedd, A., Eds., Cambridge: Royal Chem. Soc., 2014. https://doi.org/10.1039/9781849739979

  5. Garoufis, A., Hadjikakou, S.K., and Hadjiliadis, N., Coord. Chem. Rev., 2009, vol. 253, p. 1384. https://doi.org/10.1016/j.ccr.2008.09.011

    Article  CAS  Google Scholar 

  6. Medici, S., Peana, M., Nurchi, V.M., et al., Coord. Chem. Rev., 2015, vol. 284, p. 329. https://doi.org/10.1016/j.ccr.2014.08.002

    Article  CAS  Google Scholar 

  7. Alam, M.N. and Huq, F., Coord. Chem. Rev., 2016, vol. 316, p. 36. https://doi.org/10.1016/j.ccr.2016.02.001

    Article  CAS  Google Scholar 

  8. Cirri, D., Pratesi, A., Marzo, T., and Messori, L., Expert Opin. Drug Discovery, 2021, vol. 16, p. 39. https://doi.org/10.1080/17460441.2020.1819236

    Article  CAS  Google Scholar 

  9. Frei, A., Elliott, A.G., Kan, A., et al., JACS Au, 2022, vol. 2, no. 10, p. 2277. https://doi.org/10.1021/jacsau.2c00308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carneiro, T.J., Martins, A.S., Marques, M.P.M., and Gil, A.M., Front. Oncol., 2020, vol. 10, p. e590970. https://doi.org/10.3389/fonc.2020.590970

    Article  Google Scholar 

  11. Omae, I., Coord. Chem. Rev., 2014, vol. 280, p. 84. https://doi.org/10.1016/j.ccr.2014.07.019

    Article  CAS  Google Scholar 

  12. Mahdy, A.H.S., Salem, E.Z., Ahmed, M.A.B., and Entesar, A.H., Tetrahedron, 2022, vol. 121, p. e132913. https://doi.org/10.1016/j.tet.2022.132913

    Article  CAS  Google Scholar 

  13. Zielińska-Błajet, M. and Feder-Kubis, J., Int. J. Mol. Sci., 2020, vol. 21, p. 7078. https://doi.org/10.3390/ijms21197078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yarovaya, O.I. and Salakhutdinov, N.F., Russ. Chem. Rev., 2021, vol. 90, p. 488. https://doi.org/10.1070/RCR4969

    Article  Google Scholar 

  15. Ateba, S.B., Mvondo, M.A., Ngeu, S.T., et al., Curr. Med. Chem., 2018, vol. 25, p. 3162. https://doi.org/10.2174/0929867325666180214110932

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, A. and Jaitak, V., Eur. J. Med. Chem., 2019, vol. 176, p. 268. https://doi.org/10.1016/j.ejmech.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  17. Mahizan, N.A., Yang, S.K., Moo, C.L., et al., Molecules, 2019, vol. 24, p. 2631. https://doi.org/10.3390/Molecules24142631

  18. Silva, E.A.P., Carvalho, J.S., Guimarães, A.G., et al., Expert Opin. Ther. Pat., 2019, vol. 29, p. 43. https://doi.org/10.1080/13543776.2019.1558211

    Article  CAS  PubMed  Google Scholar 

  19. Zalevskaya, O.A., Gur’eva, Y.A., and Kutchin, A.V., Russ. Chem. Rev., 2019, vol. 88, p. 979. https://doi.org/10.1070/RCR4880

    Article  CAS  Google Scholar 

  20. Gur’eva, Y.A., Zalevskaya, O.A., Frolova, L.L., et al., Chem. Nat. Comp., 2011, vol. 46, no. 6, p. 920. https://doi.org/10.1007/S10600-011-9783-X

    Article  Google Scholar 

  21. Kuchin, A.V., Gur’eva, Ya.A., Frolova, L.L., et al., Russ. Chem. Bull., 2013, vol. 62, no. 3, p. 745. https://doi.org/10.1007/s11172-013-0101-6

    Article  CAS  Google Scholar 

  22. Gur’eva, Y.A., Zalevskaya, O.A., Alekseev, I.N., et al., Russ. Chem. Bull., 2014, vol. 63, no. 7, p. 1543. https://doi.org/10.1007/s11172-014-0633-4

    Article  CAS  Google Scholar 

  23. Dvornikova, I.A., Buravlev, E.V., Chukicheva, I.Y., et al., Russ. J. Org. Chem., 2015, vol. 51, p. 480. https://doi.org/10.1134/S1070428015040041

    Article  CAS  Google Scholar 

  24. Gur’eva, Y.A., Zalevskaya, O.A., Alekseev, I.N., et al., Russ. J. Org. Chem., 2018, vol. 54, p. 1285. https://doi.org/10.1134/S1070428018090026

  25. Gur’eva, Y.A., Alekseev, I.N., Dvornikova, I.A., et al., Inorg. Chim. Acta, 2018, vol. 477, p. 300. https://doi.org/10.1016/j.ica.2018.03.015

    Article  CAS  Google Scholar 

  26. Gur’eva, Y.A., Alekseev, I.N., Zalevskaya, O.A., et al., Russ. J. Org. Chem., 2016, vol. 52, p. 781. https://doi.org/10.1134/S107042801606004X

    Article  CAS  Google Scholar 

  27. Gur’eva, Y.A., Slepukhin, P.A., and Kutchin, A.V., In-org. Chim. Acta, 2019, vol. 486, p. 602. https://doi.org/10.1016/j.ica.2018.11.016

  28. Zalevskaya, O.A., Gur’eva, Y.A., Kutchin, A.V., et al., Inorg. Chim. Acta, 2021, vol. 527, p. e120593. https://doi.org/10.1016/j.ica.2021.120593

    Article  CAS  Google Scholar 

  29. Frei, A., Zuegg, J., Elliott, A.G., et al., Chem. Sci., 2020, vol. 11, p. 2627. https://doi.org/10.1039/C9SC06460E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zalevskaya, O.A., Gur’eva, Y.A., Frolova, L.L., et al., Natural Science, 2010, vol. 2, no. 11, p. 1189. https://doi.org/10.4236/ns.2010.211147

    Article  CAS  Google Scholar 

  31. Gureva, Y.A., Zalevskaya, O.A., Alekseev, I.N., et al., Chem. Nat. Comp., 2104, vol. 50, no. 4, p. 648. https://doi.org/10.1007/s10600-014-1044-3

  32. Zalevskaya, O., Gur’eva, Y., Kutchin, A., and Hansford, K., Antibiotics, 2020, vol. 9, no. 5, p. e277. https://doi.org/10.3390/antibiotics9050277

    Article  CAS  Google Scholar 

  33. Fanelli, M., Mauro, F., Vieri, F., et al., Coord. Chem. Rev., 2016, vol. 310, p. 41. https://doi.org/10.1016/j.ccr.2015.11.004

    Article  CAS  Google Scholar 

  34. Vojtek, M., Marques, M.P.M., Ferreira, I.M.P.L.V.O., et al., Drug Discov. Today, 2019, vol. 24, p. 1044. https://doi.org/10.1016/j.drudis.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  35. Kapdi, A.R. and Fairlamb, I.J.S., Chem. Soc. Rev., 2014, vol. 43, p. 4751. https://doi.org/10.1039/C4CS00063C

    Article  CAS  PubMed  Google Scholar 

  36. Michelakis, E.D., Webster, L., and Mackey, J.R., Brit. J. Cancer, 2008, vol. 99, p. 989. https://doi.org/10.1038/sj.bjc.6604554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Štarha, P. and Trávníček, Z., Coord. Chem. Rev., 2019, vol. 395, p. 130. https://doi.org/10.1016/j.ccr.2019.06.001

    Article  CAS  Google Scholar 

  38. Omondi, R.O., Ojwach, S.O., and Jaganyi, D., Inorg. Chim. Acta, 2020, vol. 512, p. e119883. https://doi.org/10.1016/j.ica.2020.119883

    Article  CAS  Google Scholar 

  39. Albert, J., García, S., Granell, J., et al., J. Organomet. Chem., 2013, vol. 724, p. 289. https://doi.org/10.1016/j.jorganchem.2012.11.034

    Article  CAS  Google Scholar 

  40. Albert, J., Bosque, R., Crespo, M., et al., Eur. J. Med. Chem., 2014, vol. 84, p. 530. https://doi.org/10.1016/j.ejmech.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  41. Albert, J., D’Andrea, L., Granell, J., et al., J. Inorg. Biochem., 2014, vol. 140, p. 80. https://doi.org/10.1016/j.jinorgbio.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  42. Albert, J., Granell, J., Qadir, R., et al., Organometallics, 2014, vol. 33, p. 7284. https://doi.org/10.1021/om501060f

    Article  CAS  Google Scholar 

  43. Karami, K., Hosseini-Kharat, M., Sadeghi-Aliabadi, H., et al., Polyhedron, 2012, vol. 50, p. 187. https://doi.org/10.1016/j.poly.2012.11.002

    Article  CAS  Google Scholar 

  44. Karami, K., Hosseini-Kharat, M., Sadeghi-Aliabadi, H., et al., Eur. J. Med. Chem., 2014, vol. 73, p. 8. https://doi.org/10.1016/j.ejmech.2013.11.042

    Article  CAS  PubMed  Google Scholar 

  45. Karami, K., Ramezanpour, A., Zakariazadeh, M., et al., ChemSelect, 2019, vol. 4, p. 5126. https://doi.org/10.1002/slct.201900707

    Article  CAS  Google Scholar 

  46. Zmejkovski, B.B., Savič, A., Poljarevič, J., et al., Polyhedron, 2014, vol. 80, p. 106. https://doi.org/10.1016/j.poly.2014.02.026

    Article  CAS  Google Scholar 

  47. Stojkovič, D.L., Jevtič, V.V., Radič, G.P., et al., J. Inorg. Biochem., 2015, vol. 143, p. 111. https://doi.org/10.1016/j.jinorgbio.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  48. Franich, A.A., Živkovič, M.D., Milovanovič, J., et al., J. Inorg. Biochem., 2020, vol. 210, p. e111158. https://doi.org/10.1016/j.jinorgbio.2020.111158

    Article  CAS  Google Scholar 

  49. Boškovič, M., Franich, A.A., Rajkovič, S., et al., ChemSelect, 2020, vol. 5, p. e10549. https://doi.org/10.1002/slct.202002350

    Article  CAS  Google Scholar 

  50. Misirlic-Dencic, S., Poljarevic, J., Isakovic, A.M., et al., Curr. Med. Chem., 2020, vol. 27, p. 380. https://doi.org/10.2174/0929867325666181031114306

    Article  CAS  PubMed  Google Scholar 

  51. Srinivasan, S., Guha, M., Kashina, A., and Avadhani, N.G., Biochim. Biophys. Acta Bioenerg., 2017, vol. 1858, p. 602. https://doi.org/10.1016/j.bbabio.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  52. Li, W., Zhang, C., and Sun, X., J. Vis. Exp., 2018, vol. 135, p. e56236. https://doi.org/10.3791/56236

    Article  CAS  Google Scholar 

  53. Warburg, O., Science, 1956, vol. 124, p. 269.

    Article  CAS  PubMed  Google Scholar 

  54. Wallace, D.C., Nat. Rev. Cancer, 2012, vol. 12, p. 685. https://doi.org/10.1038/nrc3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng, Y., Liu, P., Wang, N., et al., Oxid. Med. Cell Longev., 2019, vol. 2019, p. e8781690. https://doi.org/10.1155/2019/8781690

    Article  CAS  Google Scholar 

  56. Korga, A., Ostrowska, M., Iwan, M., et al., FEBS Open Bio, 2019, vol. 9, p. 959. https://doi.org/10.1002/2211-5463.12628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, J. and Zhang, Q., Methods in Molecular Biology, New York: Humana, 2019, vol. 1928, p. 353. https://doi.org/10.1007/978-1-4939-9027-618

  58. Hashemi, S., Karami, K., Dehkordi, Z.S., et al., J. Biomolec. Struct. Dynam., 2022, vol. 40, p. 5000. https://doi.org/10.1080/07391102.2020.1865202

    Article  CAS  Google Scholar 

  59. Abedanzadeh, S., Karami, K., Rahimi, M., et al., Dalton Trans., 2020, vol. 49, p. e14891. https://doi.org/10.1039/D0DT02304C

    Article  Google Scholar 

  60. Gur’eva, Ya.A., Zalevskaya, O.A., Nikolaeva, N.S., et al., Russ. Chem. Bull., 2023, no. 3, p. 793.

  61. Pellei, M., Del Bello, F., Porchia, M., and Santini, C., Coord. Chem. Rev., 2021, vol. 445, p. e214088. https://doi.org/10.1016/j.ccr.2021.214088

    Article  CAS  Google Scholar 

  62. Abendrot, M., Chęcińska, L., Kusz, J., et al., Molecules, 2020, vol. 25, p. 951. https://doi.org/10.3390/Molecules25040951

  63. Kiprova, N.S., Kondratenko, Y.A., Ugolkov, V.L., et al., Russ. Chem. Bull., 2020, vol. 69, p. 1789. https://doi.org/10.1007/s11172-020-2963-8

    Article  CAS  Google Scholar 

  64. Basu Baul, T.S., Nongsiej, K., Lamin Ka-Ot, A., et al., Appl. Organomet. Chem., 2019, vol. 33, p. e4905. https://doi.org/10.1002/aoc.4905

    Article  CAS  Google Scholar 

  65. Mastrolorenzo, A., Scozzafava, A., and Supuran, C.T., Eur. J. Pharm. Sci., 2000, vol. 11, p. 99. https://doi.org/10.1016/s0928-0987(00)00093-2

    Article  CAS  PubMed  Google Scholar 

  66. Azevedo-França, J.A., Borba-Santos, L.P., Almeida Pimentel, G., et al., J. Inorg. Biochem., 2021, vol. 219, p. e111401. https://doi.org/10.1016/j.jinorgbio.2021.111401

    Article  CAS  Google Scholar 

  67. Matiadis, D., Tsironis, D., Stefanou, V., et al., J. Inorg. Biochem., 2019, vol. 194, p. 65. https://doi.org/10.1016/j.jinorgbio.2019.02.008

    Article  CAS  PubMed  Google Scholar 

  68. Zaltariov, V.-F., Cazacu, M., Avadanei, M., et al., Polyhedron, 2015, vol. 100, p. 121. https://doi.org/10.1016/j.poly.2015.07.030

    Article  CAS  Google Scholar 

  69. Porchia, M., Pellei, M., Del Bello, F., and Santini, C., Molecules, 2020, vol. 9, p. e5814. https://doi.org/10.3390/molecules25245814

  70. Rukk, N.S., Kuzmina, L.G., Davydova, G.A., et al., Russ. Chem. Bull., 2020, vol. 69, p. 1394. https://doi.org/10.1007/s11172-020-2914-4

    Article  CAS  Google Scholar 

  71. Yu, P., Deng, J., Cai, J., et al., Metallomics, 2019, vol. 11, p. 1372. https://doi.org/10.1039/c9mt00124g

    Article  CAS  PubMed  Google Scholar 

  72. Garufi, A., Giorno, E., Gilardini Montani, M.S., et al., Biomolecules, 2021, vol. 11, p. 348. https://doi.org/10.3390/biom11030348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shahraki, S., Majd, M.H., and Heydari, A., J. Mol. Struct., 2019, vol. 1177, p. 536. https://doi.org/10.1016/j.molstruc.2018.10.005

    Article  CAS  Google Scholar 

  74. Chukwuma, C.I., Mashele, S.S., Eze, K.C., et al., Pharmacol. Res., 2020, vol. 155, p. e104744. https://doi.org/10.1016/j.phrs.2020.104744

    Article  CAS  Google Scholar 

  75. Motloung, D.M., Mashele, S.S., Matowane, G.R., et al., J. Pharm. Pharmacol., 2020, vol. 72, p. 1412. https://doi.org/10.1111/jphp.13322

    Article  CAS  PubMed  Google Scholar 

  76. Rice, D.R., Mendiola, M.D.L.B., Murillo-Solano, C., et al., Bioorg. Med. Chem., 2017, vol. 25, p. 2754. https://doi.org/10.1016/j.bmc.2017.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gur’eva, Ya.A., Zalevskaya, O.A., Nikolaeva, N.S., et al., Russ. Chem. Bull., 2022, no. 12, p. 2612.

  78. Fang, D. and Maldonado, E.N., Adv. Cancer Res., 2018, vol. 138, p. 41. https://doi.org/10.1016/bs.acr.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao, Y., Liu, J., and Liu, L., Mol. Med. Rep., 2020, vol. 22, p. 3017. https://doi.org/10.3892/mmr.2020.11341

    Article  CAS  PubMed  Google Scholar 

  80. Quinlan, C.L., Orr, A.L., Perevoshchikova, I.V., et al., J. Biol. Chem., 2012, vol. 287, p. e27255. https://doi.org/10.1074/jbc.M112.374629

    Article  CAS  Google Scholar 

  81. Sciacovelli, M., Guzzo, G., Morello, V., et al., Cell Metab., 2013, vol. 17, p. 988. https://doi.org/10.1016/j.cmet.2013.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guzzo, G., Sciacovelli, M., Bernardi, P., and Rasola, A., Oncotarget, 2014, vol. 5, p. e11897. https://doi.org/10.18632/oncotarget.2472

    Article  Google Scholar 

  83. Moog, S., Lussey-Lepoutre, C., and Favier, J., Endocr. Relat. Cancer, 2020, vol. 27, p. 451. https://doi.org/10.1530/ERC-20-0346

    Article  Google Scholar 

  84. Withey, S.J., Perrio, S., Christodoulou, D., et al., Radiographics, 2019, vol. 39, p. 1393. https://doi.org/10.1148/rg.2019180151

    Article  PubMed  Google Scholar 

  85. Ibrahim, A. and Chopra, S., Arch. Pathol. Lab. Med., 2020, vol. 144, p. 655. https://doi.org/10.5858/arpa.2018-0370-RS

    Article  CAS  PubMed  Google Scholar 

  86. Gill, A.J., Histopathology, 2018, vol. 72, p. 106. https://doi.org/10.1111/his.13277

    Article  PubMed  Google Scholar 

  87. Stocks, P.A., Barton, V., Antoine, T., et al., Parasitology, 2014, vol. 141, p. 50. https://doi.org/10.1017/S0031182013001571

    Article  CAS  PubMed  Google Scholar 

  88. Onwudiwe, D.C. and Ekennia, A.C., Res. Chem. Intermed., 2017, vol. 43, p. 1465. https://doi.org/10.1007/s11164-016-2709-2

    Article  CAS  Google Scholar 

  89. Ganji, N., Aveli, R., Narendrula, V., and Sreenu, D.S., J. Mol. Struct., 2018, vol. 1173, p. 173. https://doi.org/10.1016/j.molstruc.2018.06.100

    Article  CAS  Google Scholar 

  90. Oladipo, S.D., Omondi, B., and Mocktar, C., Polyhedron, 2019, vol. 170, p. 712. https://doi.org/10.1016/j.poly.2019.06.038

    Article  CAS  Google Scholar 

  91. El-Medani, S.M., Abdelmoneim, A.M., Hussein, M., et al., J. Mol. Struct., 2020, vol. 1208, p. e127860. https://doi.org/10.1016/j.molstruc.2020.127860

    Article  CAS  Google Scholar 

  92. Ramesh, G., Daravath, S., Ganji, N., et al., J. Mol. Struct., 2020, vol. 1202, p. 127338. https://doi.org/10.1016/j.molstruc.2019.127338

    Article  CAS  Google Scholar 

  93. Psomas, G., Coord. Chem. Rev., 2020, vol. 412, p. 213259. https://doi.org/10.1016/j.ccr.2020.213259

    Article  CAS  Google Scholar 

  94. Boussadia, A., Beghidja, A., Gali, L., et al., Inorg. Chim. Acta, 2020, vol. 508, p. e119656. https://doi.org/10.1016/j.ica.2020.119656

    Article  CAS  Google Scholar 

  95. Guerreiro, J.F., Gomes, M.A.G.B., Pagliari, F., et al., RSC Adv., 2020, vol. 10, p. e12699. https://doi.org/10.1039/d0ra00166j

    Article  CAS  Google Scholar 

  96. Said, M.A., Al-Unizi, A., Al-Mamary, M., et al., Inorg. Chim. Acta, 2020, vol. 505, p. e119434. https://doi.org/10.1016/j.ica.2020.119434

    Article  CAS  Google Scholar 

  97. Boulguemha, I.-E., Beghidjaa, A., Khattabib, L., et al., Inorg. Chim. Acta, 2020, vol. 507, p. e119519. https://doi.org/10.1016/j.ica.2020.119519

    Article  CAS  Google Scholar 

  98. Patel, A.K., Jadeja, R.N., Roy, H., et al., Polyhedron, 2020, vol. 186, p. e114624. https://doi.org/10.1007/s11164-016-2709-2

    Article  CAS  Google Scholar 

  99. Sakthivel, A., Thangagiri, B., Raman, N., et al., J. Biomol. Struct. Dyn., 2020, vol. 39, p. 6500. https://doi.org/10.1080/07391102.2020.1801508

    Article  CAS  PubMed  Google Scholar 

  100. Mo, D., Shi, J., Zhao, D., et al., J. Mol. Struct., 2021, vol. 1223, p. e129229. https://doi.org/10.1016/j.molstruc.2020.129229

    Article  CAS  Google Scholar 

  101. Simunkova, M., Lauro, P., Jomova, K., et al., J. Inorg. Biochem., 2019, vol. 194, p. 97. https://doi.org/10.1016/j.jinorgbio.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  102. Singh, Y.P. and Patel, S.K., J. Mol. Struct., 2021, vol. 1228, p. e129457. https://doi.org/10.1016/j.molstruc.2020.129457

    Article  CAS  Google Scholar 

  103. Siqueira, J.D., de Pellegrin, S.F., and Santos, S.S., J. Inorg. Biochem., 2020, vol. 204, p. e110950. https://doi.org/10.1016/j.jinorgbio.2019.110950

    Article  CAS  Google Scholar 

  104. Riley, D.P., Chem. Rev., 1999, vol. 99, p. 2573. https://doi.org/10.1021/cr980432g

    Article  CAS  PubMed  Google Scholar 

  105. Hordyjewska, A., Popiolek, L., and Kocot, J., Biometals, 2014, vol. 27, p. 611. https://doi.org/10.1007/s10534-014-9736-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Balsano, C. and Sideri, S., Metallomics, 2018, vol. 10, p. 1712. https://doi.org/10.1039/c8mt00219c

    Article  CAS  PubMed  Google Scholar 

  107. Santini, C., Pellei, M., Gandin, V., et al., Chem. Rev., 2014, vol. 114, p. 815. https://doi.org/10.1021/cr400135x

    Article  CAS  PubMed  Google Scholar 

  108. Zalevskaya, O.A. and Gur’eva, Y.A., Russ. J. Coord. Chem., 2021, vol. 47, p. 861. https://doi.org/10.1134/S1070328421120046

    Article  CAS  Google Scholar 

  109. Gur’eva, Y.A., Zalevskaya, O.A., Shevchenko, O.G., et al., RSC Adv., 2022, vol. 12, p. 8841. https://doi.org/10.1039/d2ra00223j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Davis, W.W. and Stout, T.R., Appl. Microbiol., 1971, vol. 22, p. 659. https://doi.org/10.1128/am.22.4.659-665.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Davis, W.W. and Stout, T.R., Appl. Microbiol., 1971, vol. 22, p. 666. https://doi.org/10.1128/am.22.4.666-670.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Santiago, P.H.O., Tiago, F.S., Castro, M.S., et al., J. Inorg. Biochem., 2020, vol. 204, p. e110949. https://doi.org/10.1016/j.jinorgbio.2019.110949

    Article  CAS  Google Scholar 

  113. Gordon, A.T., Abosede, O.O., Ntsimango, S., et al., Inorg. Chim. Acta, 2020, vol. 510, p. e119744. https://doi.org/10.1016/j.ica.2020.119744

    Article  CAS  Google Scholar 

  114. Takebayashi, J., Chen, A., and Tai, A.A., Advanced Protocols in Oxidative Stress II, Totowa: Humana, 2010, p. 287. https://doi.org/10.1007/978-1-60761-411-1_20

  115. Niki, E., Free Radical Biology Medicine, 2010, vol. 49, p. 503. https://doi.org/10.1016/j.freeradbiomed.2010.04.016

    Article  CAS  PubMed  Google Scholar 

  116. Zou, C.G., Agar, N.S., and Jones, G.L., Life Sci., 2001, vol. 69, p. 75. https://doi.org/10.1016/S0024-3205(01)01112-2

    Article  CAS  PubMed  Google Scholar 

  117. Shiva Shankar Reddy, C.S., Subramanyam, M.V.V., Vani, R., and Asha Devi, S., Toxicol. Vitr., 2007, vol. 21, p. 1355. https://doi.org/10.1016/j.tiv.2007.06.010

    Article  CAS  Google Scholar 

  118. Ajila, C.M. and Rao, P.U.J.S., Food Chem. Tox., 2008, vol. 46, p. 303. https://doi.org/10.1016/j.fct.2007.08.024

    Article  CAS  Google Scholar 

  119. Rocha, S., Costa, E., Coimbra, S., et al., Blood Cells Molecules Diseases, 2009, vol. 43, p. 68. https://doi.org/10.1021/cr980432g

    Article  CAS  PubMed  Google Scholar 

  120. Ko, F.N., Hsiao, G., and Kuo, Y.H., Free Radical Biol. Med., 1997, vol. 22, p. 215. https://doi.org/10.1016/S0891-5849(96)00295-X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The anticancer activity studies of metal complexes were carried out at the Institute of Physiologically Active Compounds, Federal Research Center of the Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences. The antibacterial and antifungal activities of palladium(II) complexes were assessed within the framework of the CO-ADD international project (Australia); those of copper(II) complexes were investigated at the Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences. The antioxidant activities of copper(II) complexes were measured using various assay systems at the Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences. All of the obtained results were included in the relevant publications. The authors are grateful to all co-authors.

Funding

The preparation of this review was supported by ongoing institutional funding. No additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Gur’eva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gur’eva, Y.A., Zalevskaya, O.A. & Kuchin, A.V. Biologically Active Palladium(II), Zinc(II), and Copper(II) Complexes with Terpene Ligands as Potential Pharmaceutical Drugs. Russ J Coord Chem 49, 631–651 (2023). https://doi.org/10.1134/S1070328423700665

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423700665

Keywords:

Navigation