Skip to main content
Log in

On the test of covariance between two high-dimensional random vectors

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We consider a problem of association test in high dimension. A new test statistic is proposed based on the covariance of random vectors and its asymptotic properties are derived under both the null hypothesis and the local alternatives. Furthermore power enhancement technique is utilized to boost the empirical power especially under sparse alternatives. We examine the finite-sample performances of the proposed test via Monte Carlo simulations, which show that the proposed test outperforms some existing procedures. An empirical analysis of a microarray data is demonstrated to detect the relationship between the genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson T (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Chiang AP, Beck JS, Yen HJ, Tayeh MK, Scheetz TE, Swiderski RE, Sheffield VC (2006) Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a BardetCBiedl syndrome gene (BBS11). Proc Natl Acad Sci 103(16):6287–6292

    Article  Google Scholar 

  • Cui H, Guo W, Zhong W (2018) Test for high-dimensional regression coefficients using refitted cross-validation variance estimation. Ann Stat 46(3):958–988

    Article  MathSciNet  MATH  Google Scholar 

  • Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29(4):751–760

    Article  MathSciNet  Google Scholar 

  • Fan J, Liao Y, Yao J (2015) Power enhancement in high-dimensional cross-sectional tests. Econometrica 83(4):1497–1541

    Article  MathSciNet  MATH  Google Scholar 

  • Hall P, Heyde CC (1980) Martingale limit theory and its application. Academic Press, New York

    MATH  Google Scholar 

  • Heller R, Heller Y, Gorfine M (2012) A consistent multivariate test of association based on ranks of distances. Biometrika 100(2):503–510

    Article  MathSciNet  MATH  Google Scholar 

  • Huang J, Ma S, Zhang CH (2008) Adaptive Lasso for sparse high-dimensional regression models. Stat Sin 18:1603–1618

    MathSciNet  MATH  Google Scholar 

  • Jiang D, Bai Z, Zheng S (2013) Testing the independence of sets of large-dimensional variables. Sci China Math 56(1):135–147

    Article  MathSciNet  MATH  Google Scholar 

  • Li W, Chen J, Yao J (2017) Testing the independence of two random vectors where only one dimension is large. Stat 51(1):141–153

    Article  MathSciNet  MATH  Google Scholar 

  • Loève M (1978) Probability theory II, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  • Robert P, Cléroux R, Ranger N (1985) Some results on vector correlation. Comput Stat Data Anal 3:25–32

    Article  MathSciNet  MATH  Google Scholar 

  • Scheetz TE, Kim KYA, Swiderski RE, Philp AR, Braun TA, Knudtson KL, Sheffield VC (2006) Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proc Natl Acad Sci 103(39):14429–14434

    Article  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Willey, New York

    Book  MATH  Google Scholar 

  • Shao X, Zhang J (2014) Martingale difference correlation and its use in high-dimensional variable screening. J Am Stat Assoc 109(507):1302–1318

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava MS, Reid N (2012) Testing the structure of the covariance matrix with fewer observations than the dimension. J Multivar Anal 112:156–171

    Article  MathSciNet  MATH  Google Scholar 

  • Székely GJ, Rizzo ML (2013) The distance correlation t-test of independence in high dimension. J Multivar Anal 117:193–213

    Article  MathSciNet  MATH  Google Scholar 

  • Székely GJ, Rizzo ML (2014) Partial distance correlation with methods for dissimilarities. Ann Stat 42(6):2382–2412

    Article  MathSciNet  MATH  Google Scholar 

  • Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing independence by correlation of distances. Ann Stat 35(6):2769–2794

    Article  MATH  Google Scholar 

  • Taskinen S, Oja H, Randles RH (2005) Multivariate nonparametric tests of independence. J Am Stat Assoc 100(471):916–925

    Article  MathSciNet  MATH  Google Scholar 

  • Wilks SS (1935) On the independence of k sets of normally distributed statistical variables. Econometrica 3(3):309–326

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Pan G (2015) Independence test for high dimensional data based on regularized canonical correlation coefficients. Ann Stat 43(2):467–500

    Article  MathSciNet  MATH  Google Scholar 

  • Yao S, Zhang X, Shao X (2018) Testing mutual independence in high dimension via distance covariance. J R Stat Soc B 80(3):455–480

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Yao S, Shao X (2018) Conditional mean and quantile dependence testing in high dimension. Ann Stat 46(1):219–246

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng S, He X, Guo J (2022) Hypothesis testing for block-structured correlation. Stat Sin 32(2):719–735

    MATH  Google Scholar 

  • Zhong PS, Chen SX (2011) Tests for high-dimensional regression coefficients with factorial designs. J Am Stat Assoc 106(493):260–274

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 12031016, 11971324,12371294, 11901406,11471223), Beijing Natural Science Foundation (Z210003), R &D Program of Beijing Municipal Education Commission (KM202110028017), the Interdisciplinary Construction of Bioinformatics and Statistics, and the Academy for Multidisciplinary Studies, Capital Normal University, and New Young Teachers’ Research Initiation Fund Project, Capital University of Economics and Business (XRZ2021046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengjian Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Without loss of generality, we can assume that \(\textrm{E}(\textbf{X})=0_{p\times 1}\) and \(\textrm{E}(\textbf{Y})=0_{q\times 1}\) hereafter. Define that \(\xi _c=\textrm{Var}\{h_c(\textbf{Z}_1,\ldots ,\textbf{Z}_{c})\}\), where \(h_c(z_1,\ldots ,z_c)=\textrm{E}\{h(z_1,\ldots ,z_c,\textbf{Z}_{c+1},\ldots ,\textbf{Z}_{4})\}\) for \(c=1,2,3,4\). Denote \(G(\textbf{X},\textbf{X}')=\textbf{X}^\top \textbf{X}'\) and \(H(\textbf{Y},\textbf{Y}')=\textbf{Y}^\top \textbf{Y}'\). Observe that \(\textrm{E}\{L(\textbf{Z},\textbf{Z}')\}=\textrm{E}\{L(\textbf{Z},\textbf{Z}')|\textbf{Z}\}=\textrm{E}\{L(\textbf{Z},\textbf{Z}')|\textbf{Z}'\}=0\) under the null, and that \(\textrm{E}\{G(\textbf{X},\textbf{X}')|\textbf{X}\}=\textrm{E}\{G(\textbf{X},\textbf{X}')|\textbf{X}'\}=\textrm{E}\{H(\textbf{Y},\textbf{Y}')|\textbf{Y}\}=\textrm{E}\{H(\textbf{Y},\textbf{Y}')|\textbf{Y}'\}=0\). Then we can obtain under the null hypothesis that

$$\begin{aligned} h_1(\textbf{Z}_1)= & {} 0,\\ h_2(\textbf{Z}_1,\textbf{Z}_2)= & {} \frac{1}{6}G(\textbf{X}_1,\textbf{X}_2)H(\textbf{Y}_1,\textbf{Y}_2),\\ h_3(\textbf{Z}_1,\textbf{Z}_2,\textbf{Z}_3)= & {} \frac{1}{12}[\{ 2G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_1,\textbf{X}_3)-G(\textbf{X}_2,\textbf{X}_3)\}H(\textbf{Y}_1,\textbf{Y}_2){}\\{} & {} +\{2G(\textbf{X}_1,\textbf{X}_3)-G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_2,\textbf{X}_3)\}H(\textbf{Y}_1,\textbf{Y}_3){}\\{} & {} +\{2G(\textbf{X}_2,\textbf{X}_3)-G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_1,\textbf{X}_3)\}H(\textbf{Y}_2,\textbf{Y}_3)],\\ h_4(\textbf{Z}_1,\textbf{Z}_2,\textbf{Z}_3,\textbf{Z}_4)= & {} \frac{1}{12}[ \{2G(\textbf{X}_1,\textbf{X}_2)+2G(\textbf{X}_3,\textbf{X}_4)-G(\textbf{X}_1,\textbf{X}_3)-G(\textbf{X}_1,\textbf{X}_4){}\\{} & {} {}-G(\textbf{X}_2,\textbf{X}_3)-G(\textbf{X}_2,\textbf{X}_4)\}\{H(\textbf{Y}_1,\textbf{Y}_2)+H(\textbf{Y}_3,\textbf{Y}_4)\}{}\\{} & {} {}+\{2G(\textbf{X}_1,\textbf{X}_3)+2G(\textbf{X}_2,\textbf{X}_4)-G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_1,\textbf{X}_4)\\{} & {} {}-G(\textbf{X}_2,\textbf{X}_3)-G(\textbf{X}_3,\textbf{X}_4)\}\{H(\textbf{Y}_1,\textbf{Y}_3)+H(\textbf{Y}_2,\textbf{Y}_4)\}{}\\{} & {} {}+\{2G(\textbf{X}_1,\textbf{X}_4)+2G(\textbf{X}_2,\textbf{X}_3) -G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_1,\textbf{X}_3){}\\{} & {} {}-G(\textbf{X}_2,\textbf{X}_4)-G(\textbf{X}_3,\textbf{X}_4)\}\{H(\textbf{Y}_1,\textbf{Y}_4)+H(\textbf{Y}_2,\textbf{Y}_3)\}]. \end{aligned}$$

Under Assumption (A1) we have

$$\begin{aligned} \xi _1= 0, \xi _2=\frac{\zeta ^2}{36}, \xi _3=o(n\zeta ^2), \xi _4=o(n^2\zeta ^2). \end{aligned}$$

Applying the Hoeffding’ decomposition in Serfling (1980), we get that

$$\begin{aligned} \frac{nT_{n,p,q}(\textbf{X},\textbf{Y})}{\sqrt{2\zeta ^2}}= \frac{\sum \limits _{1\le i< j\le n}L(\textbf{Z}_i,\textbf{Z}_j)}{\sqrt{\left( {\begin{array}{c}n\\ 2\end{array}}\right) \zeta ^2}}+o_p(1). \end{aligned}$$

Write \(M_j=\sum _{i=1}^{j-1}L(\textbf{Z}_i,\textbf{Z}_j)\), \(S_u =\sum _{j=2}^u\sum _{i=1}^{j-1}L(\textbf{Z}_i,\textbf{Z}_j)=\sum _{j=2}^u M_j\) and the filtration \(\mathscr {F}_u=\sigma \{\textbf{Z}_1, \ldots ,\textbf{Z}_u\}\). Since \(\textrm{E}\{L(\textbf{Z},\textbf{Z}')\} =\textrm{E}\{L(\textbf{Z},\textbf{Z}')|\textbf{Z}\} =\textrm{E}[L(\textbf{Z},\textbf{Z}')|\textbf{Z}'\}=0\), then \(\textrm{E}(S_u)=0\) and for \(u<v\),

$$\begin{aligned} \textrm{E}(S_v|\mathscr {F}_u)= & {} S_u+\sum _{j=u+1}^v\sum _{i=1}^{u}\textrm{E}\{L(\textbf{Z}_i,\textbf{Z}_j)|\textbf{Z}_i\} +\sum _{j=u+2}^v\sum _{i=u+1}^{j-1}\textrm{E}\{L(\textbf{Z}_i,\textbf{Z}_j)\}\\= & {} S_u. \end{aligned}$$

This implies that \(S_u\) is adaptive to \(\mathscr {F}_u\) and thus it is a mean-zero martingale sequence.

To obtain the asymptotic normality of \(\sum _{1\le i< j\le n}L(\textbf{Z}_i,\textbf{Z}_j))/\sqrt{\left( {\begin{array}{c}n\\ 2\end{array}}\right) \zeta ^2}\), we only need to verify the two following conditions given by Corollary 3.1 in Hall and Heyde (1980).

Condition (1): the conditional variance

$$\begin{aligned} \frac{2}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}(M_j^2|\mathscr {F}_{j-1})\overset{P}{\longrightarrow } 1, \end{aligned}$$

and Condition (2): the conditional Lindeberg condition, that is, for all \(\varepsilon >0\),

$$\begin{aligned} \frac{1}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}\Big [M_j^2\mathbf{{I}}\{|M_j|>\varepsilon \sqrt{n(n-1)\zeta ^2} \}| \mathscr {F}_{j-1}\Big ]\overset{P}{\longrightarrow }\ 0. \end{aligned}$$

To prove condition (1), it is sufficient to prove that

$$\begin{aligned} \textrm{E}\left\{ \frac{2}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}(M_j^2|\mathscr {F}_{j-1})\right\} =1, \end{aligned}$$

and

$$\begin{aligned} \textrm{Var}\left\{ \frac{2}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}(M_j^2|\mathscr {F}_{j-1})\right\} \overset{}{\longrightarrow } 0. \end{aligned}$$

Notice again that \(\textrm{E}\{L(\textbf{Z},\textbf{Z}')\}=\textrm{E}\{L(\textbf{Z},\textbf{Z}')|\textbf{Z}\} =\textrm{E}\{L(\textbf{Z},\textbf{Z}')|\textbf{Z}'\}=0\). We then show that

$$\begin{aligned}{} & {} \textrm{E}\left\{ \frac{2}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}(M_j^2|\mathscr {F}_{j-1})\right\} \\{} & {} \quad =\frac{2}{n(n-1)\zeta ^2} \sum _{j=2}^n\textrm{E}\left\{ \sum _{i,i^{'}=1}^{j-1}L(\textbf{Z}_i,\textbf{Z}_j)L(\textbf{Z}_{i'},\textbf{Z}_j)\right\} \\{} & {} \quad = 1. \end{aligned}$$

Next we will prove that

$$\begin{aligned} \textrm{Var}\left\{ \frac{2}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}(M_j^2|\mathscr {F}_{j-1})\right\} \overset{}{\longrightarrow } 0. \end{aligned}$$

Recall that \(L_1(\textbf{Z},\textbf{Z}')=\textrm{E}\{L(\textbf{Z},\textbf{Z}'') L(\textbf{Z}',\textbf{Z}'')| (\textbf{Z},\textbf{Z}')\}\). It is easy to check that

$$\begin{aligned} \textrm{E}\{L_1(\textbf{Z},\textbf{Z}')\}=\textrm{E}\{L_1(\textbf{Z},\textbf{Z}')|\textbf{Z}\}=\textrm{E}\{L_1(\textbf{Z},\textbf{Z}')|\textbf{Z}'\}=0. \end{aligned}$$

Then we have that

$$\begin{aligned}{} & {} \textrm{Var}\left\{ \sum _{j=2}^n\textrm{E}(M_j^2|\mathscr {F}_{j-1})\right\} \\{} & {} \quad =\sum _{j=2}^n\textrm{Var}\Big \{\textrm{E}(M_j^2|\mathscr {F}_{j-1})\Big \} +2\sum _{ 2\le j<t\le n }\textrm{Cov}\Big \{\textrm{E}(M_j^2| \mathscr {F}_{j-1}),\textrm{E}(M_t^2| \mathscr {F}_{t-1})\Big \}\\{} & {} \quad =\frac{n(n-1)(2n-1)}{6}\textrm{Var}\{L_1(\textbf{Z},\textbf{Z})\}+\frac{n(n-1)^2(n-2)}{3}\textrm{E}\{L_1(\textbf{Z},\textbf{Z}')^2\}. \end{aligned}$$

When assumption (A1) is true, we thus obtain that

$$\begin{aligned} \textrm{Var}\left\{ \frac{2}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}(M_j^2|\mathscr {F}_{j-1})\right\}= & {} \frac{4}{n^2(n-1)^2\zeta ^4}\textrm{Var}\left\{ \sum _{j=2}^n\textrm{E}[M_j^2|\mathscr {F}_{j-1})\right\} \\\longrightarrow & {} 0, \end{aligned}$$

which ensures condition (1).

Next condition (2) will be verified. Direct calculation shows that

$$\begin{aligned} \sum _{j=2}^n\textrm{E}(M_j^4)= & {} \sum _{j=2}^n\sum _{i_1,i_2,i_3,i_4=1}^{j-1}\textrm{E}\{L(\textbf{Z}_{i_1},\textbf{Z}_j) L(\textbf{Z}_{i_2},\textbf{Z}_j)L(\textbf{Z}_{i_3},\textbf{Z}_j)L(\textbf{Z}_{i_4},\textbf{Z}_j)\}\\= & {} \frac{n(n-1)}{2}\textrm{E}\{L(\textbf{Z},\textbf{Z}')^4] +n(n-1)(n-2)\textrm{E}[L(\textbf{Z},\textbf{Z}')^2L(\textbf{Z},\textbf{Z}'')^2]. \end{aligned}$$

Again under assumption (A1), it is easy to show that

$$\begin{aligned} \frac{1}{n^4\zeta ^4}\sum _{j=2}^n\textrm{E}(M_j^4) \rightarrow 0, \end{aligned}$$

which implies that

$$\begin{aligned} \frac{1}{n^2(n-1)^2\zeta ^4}\sum _{j=2}^n\textrm{E}(M_j^4|\mathscr {F}_{j-1})\xrightarrow {P} 0. \end{aligned}$$

Notice that for all \(\varepsilon >0\),

$$\begin{aligned}{} & {} \frac{1}{n(n-1)\zeta ^2}\sum _{j=2}^n\textrm{E}[M_j^2\mathbf{{I}}\{|M_j|>\varepsilon \sqrt{n(n-1)\zeta ^2} \}| \mathscr {F}_{j-1}]\\{} & {} \quad \le \frac{1}{\varepsilon ^2 n^2(n-1)^2\zeta ^4}\sum _{j=2}^n\textrm{E}(M_j^4| \mathscr {F}_{j-1}), \end{aligned}$$

which implies condition (2).

Therefore, we can show that

$$\begin{aligned} \frac{\sum \limits _{1\le i< j\le n}L(\textbf{Z}_i,\textbf{Z}_j)}{\sqrt{\left( {\begin{array}{c}n\\ 2\end{array}}\right) \zeta ^2}} \overset{d}{\longrightarrow }\ {\mathcal {N}}(0,1). \end{aligned}$$

Using the Slutsky theorem we obtain that

$$\begin{aligned} \frac{nT_{n,p,q}((\textbf{X},\textbf{Y}))}{\sqrt{2\zeta ^2}} \overset{d}{\longrightarrow }\ {\mathcal {N}}(0,1). \end{aligned}$$
(41)

In the following, we will show the consistency of \(\zeta ^2_n\). That is,

$$\begin{aligned} \frac{\zeta ^2_n}{\zeta ^2} \overset{P}{\longrightarrow }\ 1. \end{aligned}$$
(42)

To obtain this result, it is sufficient to verify \(\textrm{E}(\zeta ^2_n/\zeta ^2)\rightarrow 1\) and \(\textrm{Var}(\zeta ^2_n/\zeta ^2)\rightarrow 0\), respectively. Recall the definition of \(A_{ij}\) and \(B_{ij}\), we can rewrite them in the following form:

$$\begin{aligned} A_{ij}= & {} a_{ij}-\frac{1}{n-2}\sum _{l\ne i} a_{il}-\frac{1}{n-2}\sum _{k\ne j} a_{kj}+ \frac{1}{(n-1)(n-2)}\sum _{k\ne l} a_{kl}, \\= & {} \frac{n-3}{n-1}\left\{ G(\textbf{X}_i,\textbf{X}_j)-\frac{1}{n-2}\sum _{l\notin \{i,j\}}G(\textbf{X}_i,\textbf{X}_l) -\frac{1}{n-2}\sum _{k\notin \{i,j\}}G(\textbf{X}_k,\textbf{X}_j){}\right. \\{} & {} \left. {}+\frac{1}{(n-2)(n-3)}\sum _{\{k,l\}\bigcap \{i,j\}=\emptyset }G(\textbf{X}_k,\textbf{X}_l)\right\} \\:= & {} \frac{n-3}{n-1}(I_{n,1}+I_{n,2}+I_{n,3}+I_{n,4}), \\ B_{ij}= & {} b_{ij}-\frac{1}{n-2}\sum _{l\ne i} b_{il}-\frac{1}{n-2}\sum _{k\ne j}^n b_{kj}+ \frac{1}{(n-1)(n-2)}\sum _{k\ne l} b_{kl}, \\= & {} \frac{n-3}{n-1}\left\{ H(\textbf{Y}_i,\textbf{Y}_j)-\frac{1}{n-2}\sum _{l\notin \{i,j\}}H(\textbf{Y}_i,\textbf{Y}_l) -\frac{1}{n-2}\sum _{k\notin \{i,j\}}H(\textbf{Y}_k,\textbf{Y}_j){}\right. \\{} & {} \left. {}+\frac{1}{(n-2)(n-3)}\sum _{\{k,l\}\bigcap \{i,j\}=\emptyset }H(\textbf{Y}_k,\textbf{Y}_l)\right\} \\:= & {} \frac{n-3}{n-1}(J_{n,1}+J_{n,2}+J_{n,3}+J_{n,4}). \end{aligned}$$

Notice that \(\textrm{E}\{G(\textbf{X},\textbf{X}')|\textbf{X}\}=0\) and \(\textrm{E}\{H(\textbf{Y},\textbf{Y}')|\textbf{Y}\}=0\), we have for \(1\le i \ne j\le n\),

$$\begin{aligned}{} & {} \frac{(n-1)^4}{(n-3)^4}\textrm{E}(A_{ij}^2B_{ij}^2) \\{} & {} \quad = \textrm{E}\{(I_{n,1}+I_{n,2}+I_{n,3}+I_{n,4})^2 (J_{n,1}+J_{n,2}+J_{n,3}+J_{n,4})^2\} \\{} & {} \quad = \textrm{E}[\{I_{n,1}^2+2I_{n,1}(I_{n,2}+I_{n,3}+I_{n,4})+(I_{n,2}+I_{n,3}+I_{n,4})^2\} {}\\{} & {} \qquad \{J_{n,1}^2+2J_{n,1}(J_{n,2}+J_{n,3} +J_{n,4})+(J_{n,2}+J_{n,3}+J_{n,4})^2\}]\\{} & {} \quad =\textrm{E}(I_{n,1}^2J_{n,1}^2)+2\textrm{E}\{I_{n,1}^2J_{n,1}(J_{n,2}+J_{n,3}+J_{n,4})\} +2\textrm{E}\{J_{n,1}^2I_{n,1}(I_{n,2}+I_{n,3}+I_{n,4})\}{}\\{} & {} \qquad +\textrm{E}\{I_{n,1}^2(J_{n,2}+J_{n,3}+J_{n,4})^2\}+\textrm{E}\{J_{n,1}^2(I_{n,2}+I_{n,3}+I_{n,4})^2\} +\textrm{E}[\{2I_{n,1}(I_{n,2}{}\\{} & {} \qquad +I_{n,3}+I_{n,4})+(I_{n,2}+I_{n,3}+I_{n,4})^2\}\\{} & {} \qquad \{2J_{n,1}(J_{n,2}+J_{n,3}+J_{n,4})+(J_{n,2}+J_{n,3}+J_{n,4})^2\}], \end{aligned}$$

which implies that

$$\begin{aligned}{} & {} \left| \frac{(n-1)^4}{(n-3)^4}\textrm{E}(A_{ij}^2B_{ij}^2)-\textrm{E}(I_{n,1}^2J_{n,1}^2)\right| \\{} & {} \quad \le O\{\textrm{E}(I_{n,1}^2J_{n,2}^2)+\textrm{E}(I_{n,1}^2J_{n,3}^2)+\textrm{E}(I_{n,1}^2J_{n,4}^2){}\\{} & {} \qquad +\textrm{E}(I_{n,2}^2 J_{n,1}^2)+\textrm{E}(I_{n,2}^2J_{n,2}^2) +\textrm{E}(I_{n,2}^2J_{n,3}^2)+\textrm{E}(I_{n,2}^2J_{n,4}^2)\\{} & {} \qquad +\textrm{E}(I_{n,3}^2 J_{n,1}^2)+\textrm{E}(I_{n,3}^2 J_{n,2}^2)+\textrm{E}(I_{n,3}^2J_{n,3}^2)+\textrm{E}(I_{n,3}^2J_{n,4}^2){}\\{} & {} \qquad +\textrm{E}(I_{n,4}^2 J_{n,1}^2)+\textrm{E}(I_{n,4}^2 J_{n,2}^2)+\textrm{E}(I_{n,4}^2 J_{n,3}^2)+\textrm{E}(I_{n,4}^2J_{n,4}^2)\}. \end{aligned}$$

By the Cauchy–Schwarz inequality, we have under condition (A1) that

$$\begin{aligned} \textrm{E}\{G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}\le & {} \sqrt{\textrm{E}\{G(\textbf{X},\textbf{X}')^4H(\textbf{Y},\textbf{Y}'')^4\}} \\= & {} o(n\zeta ^2), \\ \textrm{E}\{G(\textbf{X},\textbf{X}')^2\}\textrm{E}\{H(\textbf{Y},\textbf{Y}'')^2\}\le & {} \sqrt{\textrm{E}\{G(\textbf{X},\textbf{X}')^4\}\textrm{E}\{H(\textbf{Y},\textbf{Y}'')^4\}} \\= & {} o(n\zeta ^2). \\ \end{aligned}$$

Then it is trivial to check that

$$\begin{aligned} \textrm{E}(I_{n,1}^2J_{n,1}^2)= & {} \zeta ^2,\\ \textrm{E}(I_{n,1}^2J_{n,2}^2)= & {} \frac{1}{(n-2)^2}\textrm{E}\left[ G(\textbf{X}_i,\textbf{X}_j)^2\left\{ \sum _{l\notin \{i,j\}}H(\textbf{Y}_i,\textbf{Y}_l)^2{}\right. \right. \\{} & {} \left. \left. +\sum _{\{l,l'\}\bigcap \{i,j\}=\emptyset }H(\textbf{Y}_i,\textbf{Y}_l)H(\textbf{Y}_i,\textbf{Y}_{l'})\right\} \right] \\= & {} \frac{1}{(n-2)}\textrm{E}\{G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}\\= & {} o(\zeta ^2),\\ \textrm{E}(I_{n,1}^2J_{n,3}^2)= & {} \textrm{E}(I_{n,2}^2 J_{n,1}^2)=\textrm{E}(I_{n,3}^2 J_{n,1}^2)\\= & {} \frac{1}{(n-2)}\textrm{E}\{G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}\\= & {} o(\zeta ^2),\\ \textrm{E}(I_{n,1}^2J_{n,4}^2)= & {} \frac{1}{(n-2)^2(n-3)^2}\textrm{E}\left[ G(\textbf{X}_i,\textbf{X}_j)^2\left\{ \sum _{\{k,l\}\bigcap \{i,j\}=\emptyset } 2H(\textbf{Y}_k,\textbf{Y}_l)^2{}\right. \right. \\{} & {} +\sum _{\{k,l,l'\}\bigcap \{i,j\}=\emptyset }4H(\textbf{Y}_k,\textbf{Y}_l)H(\textbf{Y}_{k},\textbf{Y}_{l'}) {}\\{} & {} \left. \left. +\sum _{\{k,k',l,l'\}\bigcap \{i,j\}=\emptyset }H(\textbf{Y}_k,\textbf{Y}_l)H(\textbf{Y}_{k'},\textbf{Y}_{l'})\right\} \right] \\= & {} \frac{2}{(n-2)(n-3)}\textrm{E}\{G(\textbf{X},\textbf{X}')^2\}\textrm{E}\{H(\textbf{Y},\textbf{Y}')^2\}\\= & {} o(\zeta ^2), \end{aligned}$$
$$\begin{aligned} \textrm{E}(I_{n,4}^2 J_{n,1}^2)= & {} \frac{2}{(n-2)(n-3)}\textrm{E}\{G(\textbf{X},\textbf{X}')^2\}\textrm{E}\{H(\textbf{Y},\textbf{Y}')^2\}\\= & {} o(\zeta ^2),\\ \textrm{E}(I_{n,2}^2J_{n,2}^2)= & {} \frac{1}{(n-2)^4}\textrm{E}\left[ \left\{ \sum _{l\notin \{i,j\}} G(\textbf{X}_i,\textbf{X}_l)^2 +\sum _{\{l,l'\}\bigcap \{i,j\}=\emptyset }G(\textbf{X}_i,\textbf{X}_l)G(\textbf{X}_i,\textbf{X}_{l'})\right\} {}\right. \\{} & {} \left. \left\{ \sum _{l\notin \{i,j\}} H(\textbf{Y}_i,\textbf{Y}_l)^2 +\sum _{\{l,l'\}\bigcap \{i,j\}=\emptyset }H(\textbf{Y}_i,\textbf{Y}_l)H(\textbf{Y}_i,\textbf{Y}_{l'})\right\} \right] \\= & {} \frac{1}{(n-2)^3}\zeta ^2 +\frac{n-3}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}{}\\{} & {} + \frac{2(n-3)}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')H(\textbf{Y},\textbf{Y}')G(\textbf{X},\textbf{X}'')H(\textbf{Y},\textbf{Y}'')\}\\\le & {} O\left\{ \frac{\zeta ^2+\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}}{n^2}\right\} \\= & {} o(\zeta ^2),\\ \textrm{E}(I_{n,3}^2J_{n,3}^2)= & {} \frac{1}{(n-2)^3}\zeta ^2 +\frac{n-3}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\},\\{} & {} + \frac{2(n-3)}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')H(\textbf{Y},\textbf{Y}')G(\textbf{X},\textbf{X}'')H(\textbf{Y},\textbf{Y}'')\}\\\le & {} O\left\{ \frac{\zeta ^2+\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}}{n^2}\right\} \\= & {} o(\zeta ^2),\end{aligned}$$
$$\begin{aligned} \textrm{E}(I_{n,2}^2J_{n,3}^2)= & {} \frac{1}{(n-2)^4}\textrm{E}\left[ \left\{ \sum _{l\notin \{i,j\}} G(\textbf{X}_i,\textbf{X}_l)^2 +\sum _{\{l,l'\}\bigcap \{i,j\}=\emptyset }G(\textbf{X}_i,\textbf{X}_l)G(\textbf{X}_i,\textbf{X}_{l'})\right\} {}\right. \\{} & {} \left. \left\{ \sum _{k\notin \{i,j\}} H(\textbf{Y}_k,\textbf{Y}_j)^2 +\sum _{\{k,k'\}\bigcap \{i,j\}=\emptyset }H(\textbf{Y}_k,\textbf{Y}_j)H(\textbf{Y}_{k'},\textbf{Y}_j)\right\} \right] \\= & {} \frac{1}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\} +\frac{n-3}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')^2\}\textrm{E}\{H(\textbf{Y},\textbf{Y}')^2\}\\{} & {} + \frac{2(n-3)}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}'')H(\textbf{Y},\textbf{Y}''')G(\textbf{X}',\textbf{X}'')H(\textbf{Y}',\textbf{Y}''')\}\\\le & {} O\left\{ \frac{\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}+\textrm{E}\{ G(\textbf{X},\textbf{X}')^2\}\textrm{E}\{H(\textbf{Y},\textbf{Y}')^2\}}{n^2}\right\} \\= & {} o(\zeta ^2),\\ \textrm{E}(I_{n,3}^2J_{n,2}^2)= & {} \frac{1}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\} +\frac{n-3}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}')^2\}\textrm{E}\{H(\textbf{Y},\textbf{Y}')^2\}\\{} & {} + \frac{2(n-3)}{(n-2)^3}\textrm{E}\{ G(\textbf{X},\textbf{X}'')H(\textbf{Y},\textbf{Y}''')G(\textbf{X}',\textbf{X}'')H(\textbf{Y}',\textbf{Y}''')\}\\\le & {} O\left\{ \frac{\textrm{E}\{ G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2\}+\textrm{E}\{ G(\textbf{X},\textbf{X}')^2\}\textrm{E}\{H(\textbf{Y},\textbf{Y}')^2\}}{n^2}\right\} \\= & {} o(\zeta ^2),\\ \textrm{E}(I_{n,2}^2J_{n,4}^2)= & {} \frac{1}{(n-2)^4(n-3)^2}\textrm{E}\left[ \left\{ \sum _{l\notin \{i,j\}} G(\textbf{X}_i,\textbf{X}_l)^2 +\sum _{\{l,l'\}\bigcap \{i,j\}=\emptyset }G(\textbf{X}_i,\textbf{X}_l)G(\textbf{X}_i,\textbf{X}_{l'})\right\} {}\right. \\{} & {} \left\{ \sum _{\{k,l\}\bigcap \{i,j\}=\emptyset } 2H(\textbf{Y}_k,\textbf{Y}_l)^2 +\sum _{\{k,l,l'\}\bigcap \{i,j\}=\emptyset }4H(\textbf{Y}_k,\textbf{Y}_l)H(\textbf{Y}_{k},\textbf{Y}_{l'}){}\right. \\{} & {} \left. \left. +\sum _{\{k,k',l,l'\}\bigcap \{i,j\}=\emptyset }H(\textbf{Y}_k,\textbf{Y}_l)H(\textbf{Y}_{k'},\textbf{Y}_{l'})\right\} \right] \\= & {} \frac{1}{(n-2)^4(n-3)^2}\{4(n-2)(n-3)\textrm{E}( G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2){}\\ {}{} & {} \hspace{1.6cm}+2(n-2)(n-3)(n-4)\textrm{E}( G(\textbf{X},\textbf{X}')^2)\textrm{E}(H(\textbf{Y},\textbf{Y}')^2){}\\ {}{} & {} \hspace{1.6cm}+4(n-2)(n-3)\textrm{E}(G(\textbf{X},\textbf{X}')G(\textbf{X},\textbf{X}'')H(\textbf{Y}',\textbf{Y}'')^2)\\ {}{} & {} +8(n-2)(n-3)(n-4)\textrm{E}\{ G(\textbf{X},\textbf{X}'')H(\textbf{Y},\textbf{Y}''')G(\textbf{X}',\textbf{X}'')H(\textbf{Y}',\textbf{Y}''')\}\\\le & {} O\left\{ \frac{\textrm{E}( G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2)}{n^3}\} +O\{\frac{\textrm{E}( G(\textbf{X},\textbf{X}')^2)\textrm{E}(H(\textbf{Y},\textbf{Y}')^2)}{n^3}\right\} \\= & {} o(\zeta ^2),\end{aligned}$$
$$\begin{aligned} \textrm{E}(I_{n,3}^2J_{n,4}^2)= & {} \textrm{E}(I_{n,4}^2 J_{n,2}^2)=\textrm{E}(I_{n,4}^2 J_{n,3}^2)\\\le & {} O\left\{ \frac{\textrm{E}( G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2)}{n^3}\} +O\{\frac{\textrm{E}( G(\textbf{X},\textbf{X}')^2)\textrm{E}(H(\textbf{Y},\textbf{Y}')^2)}{n^3}\right\} \\= & {} o(\zeta ^2),\\ \textrm{E}(I_{n,4}^2J_{n,4}^2)= & {} \frac{1}{(n-2)^4(n-3)^4}\textrm{E}\left[ \left\{ \sum _{\{k,l,l'\}\bigcap \{i,j\}=\emptyset }4G(\textbf{X}_k,\textbf{X}_l)G(\textbf{X}_{k},\textbf{X}_{l'}){}\right. \right. \\ {}{} & {} \left. +\sum _{\{k,l\}\bigcap \{i,j\}=\emptyset } 2G(\textbf{X}_k,\textbf{X}_l)^2+\sum _{\{k,k',l,l'\}\bigcap \{i,j\}=\emptyset }G(\textbf{X}_k,\textbf{X}_l)G(\textbf{X}_{k'},\textbf{X}_{l'})\right\} {}\\ {}{} & {} \left\{ \sum _{\{k,l\}\bigcap \{i,j\}=\emptyset } 2H(\textbf{Y}_k,\textbf{Y}_l)^2 +\sum _{\{k,l,l'\}\bigcap \{i,j\}=\emptyset }4H(\textbf{Y}_k,\textbf{Y}_l)H(\textbf{Y}_{k},\textbf{Y}_{l'}){}\right. \\ {}{} & {} +\left. \left. \left. \sum _{\{k,k',l,l'\}\bigcap \{i,j\}=\emptyset }H(\textbf{Y}_k,\textbf{Y}_l)H(\textbf{Y}_{k'},\textbf{Y}_{l'})\right\} \right. \right] \\= & {} \frac{1}{(n-2)^4(n-3)^4}[O(n^2\zeta ^2)+O\{n^3\textrm{E}( G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2)\}+O\{n^4\textrm{E}( {}\\ {}{} & {} G(\textbf{X},\textbf{X}')^2)\textrm{E}(H(\textbf{Y},\textbf{Y}')^2)\}+O\{n^3\textrm{E}(G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')H(\textbf{Y}',\textbf{Y}''))\}{}\\ {}{} & {} +O\{n^3\textrm{E}(H(\textbf{Y},\textbf{Y}')^2G(\textbf{X},\textbf{X}'')G(\textbf{X}',\textbf{X}''))\}\\ {}{} & {} +O\{n^3\textrm{E}( G(\textbf{X},\textbf{X}')G(\textbf{X},\textbf{X}'')H(\textbf{Y},\textbf{Y}')H(\textbf{Y},\textbf{Y}''))\}{}\\ {}{} & {} + O\{n^3\textrm{E}( G(\textbf{X},\textbf{X}')G(\textbf{X},\textbf{X}'')H(\textbf{Y},\textbf{Y}')H(\textbf{Y}',\textbf{Y}''))\}\\ {}{} & {} + O\{n^4\textrm{E}( G(\textbf{X},\textbf{X}')G(\textbf{X},\textbf{X}'')H(\textbf{Y}''',\textbf{Y}')H(\textbf{Y}''',\textbf{Y}''))\}\\ {}{} & {} + O\{n^4\textrm{E}( G(\textbf{X},\textbf{X}')G(\textbf{X}'',\textbf{X}''')H(\textbf{Y},\textbf{Y}')H(\textbf{Y}'',\textbf{Y}'''))\}\\ {}{} & {} + O\{n^4\textrm{E}( G(\textbf{X},\textbf{X}')G(\textbf{X}'',\textbf{X}''')H(\textbf{Y},\textbf{Y}'')H(\textbf{Y}',\textbf{Y}'''))\}]\\\le & {} O\left\{ \frac{\zeta ^2}{n^4}\right\} +O\left\{ \frac{\textrm{E}( G(\textbf{X},\textbf{X}')^2H(\textbf{Y},\textbf{Y}'')^2)}{n^4}\right\} +O\left\{ \frac{\textrm{E}( G(\textbf{X},\textbf{X}')^2)\textrm{E}(H(\textbf{Y},\textbf{Y}')^2)}{n^4}\right\} \\= & {} o(\zeta ^2). \end{aligned}$$

From the computations above we can conclude under assumption (A1) that

$$\begin{aligned} \textrm{E}\left( \frac{\zeta ^2_n}{\zeta ^2}\right) \longrightarrow 1. \end{aligned}$$

Using similar technique we also show under assumption (A1) that

$$\begin{aligned} \textrm{Var}\left( \frac{\zeta ^2_n}{\zeta ^2}\right) \longrightarrow 0. \end{aligned}$$

This proof is thus completed.

\(\square \)

Proof of Proposition 1

Note that \(\textbf{Z}=(\textbf{X},\textbf{Y})^{^\top }\) is from multivariate normal distribution \({\mathcal {N}}(0_{(p+q)\times 1},\textbf{I}_{(p+q)})\). Then we can conclude that \(\textbf{X}\) and \(\textbf{Y}\) are independent, \(\textbf{X}\sim {\mathcal {N}}(0_{p\times 1},\textbf{I}_{p})\) and \(\textbf{Y}\sim {\mathcal {N}}(0_{q\times 1},\textbf{I}_{q})\). Therefore we only need to compute \(\zeta ^2\), \(\textrm{E}\{L_1(\textbf{Z},\textbf{Z}^{\prime })^2\}\) and \(\textrm{E}\{(\textbf{X}^\top \textbf{X}'\textbf{Y}^\top \textbf{Y}')^4\}\) since \(\textrm{E}\{(\textbf{X}^\top \textbf{X}'\textbf{Y}^\top \textbf{Y}')^4\}=\textrm{E}\{(\textbf{X}^\top \textbf{X}'\textbf{Y}^\top \textbf{Y}'')^4\} =\textrm{E}\{(\textbf{X}^\top \textbf{X}')^4\}\textrm{E}\{(\textbf{Y}^\top \textbf{Y}'')^4\}.\) Direct calculations show that

$$\begin{aligned} \zeta ^2= & {} \textrm{E}\{\Vert \textbf{X}\Vert ^2\}\textrm{E}\{\Vert \textbf{Y}\Vert ^2\} = pq,\\ \textrm{E}\{L_1(\textbf{Z},\textbf{Z}')^2\}= & {} \textrm{E}\{(\textbf{X}^\top \textbf{X}')^2\}\textrm{E}\{(\textbf{Y}^\top \textbf{Y}')^2\} =pq,\\ \textrm{E}\{(\textbf{X}^\top \textbf{X}'\textbf{Y}^\top \textbf{Y}')^4\}= & {} 9\textrm{E}\{\Vert \textbf{X}\Vert ^4\}\textrm{E}\{\Vert \textbf{Y}\Vert ^4\}=9pq(p+2)(q+2). \end{aligned}$$

\(\square \)

Proof of Theorem 2

Recall the expression of \(h_4(\textbf{Z}_1,\textbf{Z}_2,\textbf{Z}_3,\textbf{Z}_4)\) in the proof of Theorem 1, and the fact that \(\textrm{E}\{G(\textbf{X},\textbf{X}')|\textbf{X}\}=\textrm{E}\{G(\textbf{X},\textbf{X}')|\textbf{X}'\}=0\) and \(\textrm{E}\{H(\textbf{Y},\textbf{Y}')|\textbf{Y}\}=\textrm{E}\{H(\textbf{Y},\textbf{Y}')|\textbf{Y}'\}=0\), we obtain the corresponding \(h_1(\textbf{Z}_1),h_2(\textbf{Z}_1,\textbf{Z}_2)\) and \(h_3(\textbf{Z}_1,\textbf{Z}_2,\textbf{Z}_3)\) under the local alternative as follows.

$$\begin{aligned} h_1(\textbf{Z}_1)= & {} \frac{1}{2}\{K(\textbf{X}_1,\textbf{Y}_1)+\textrm{tr}(\varvec{\Sigma }_{\textbf{X}\textbf{Y}}\varvec{\Sigma }_{\textbf{Y}\textbf{X}})\}, \\ h_2(\textbf{Z}_1,\textbf{Z}_2)= & {} \frac{1}{6}\{ G(\textbf{X}_1,\textbf{X}_2)H(\textbf{Y}_1,\textbf{Y}_2)+2K(\textbf{X}_1,\textbf{Y}_1)+2K(\textbf{X}_2,\textbf{Y}_2){}\\ {}{} & {} -K(\textbf{X}_2,\textbf{Y}_1)-K(\textbf{X}_1,\textbf{Y}_2)+\textrm{tr}(\varvec{\Sigma }_{\textbf{X}\textbf{Y}}\varvec{\Sigma }_{\textbf{Y}\textbf{X}})\},\\ h_3(\textbf{Z}_1,\textbf{Z}_2,\textbf{Z}_3)= & {} \frac{1}{12}[\{ 2G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_1,\textbf{X}_3)-G(\textbf{X}_2,\textbf{X}_3)\}H(\textbf{Y}_1,\textbf{Y}_2){}\\ {}{} & {} +\{2G(\textbf{X}_1,\textbf{X}_3)-G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_2,\textbf{X}_3)\}H(\textbf{Y}_1,\textbf{Y}_3){}\\ {}{} & {} +\{2G(\textbf{X}_2,\textbf{X}_3)-G(\textbf{X}_1,\textbf{X}_2)-G(\textbf{X}_1,\textbf{X}_3)\}H(\textbf{Y}_2,\textbf{Y}_3){}\\ {}{} & {} +2K(\textbf{X}_1,\textbf{Y}_1)-K(\textbf{X}_2,\textbf{Y}_1)-K(\textbf{X}_3,\textbf{Y}_1)+2K(\textbf{X}_2,\textbf{Y}_2){}\\ {}{} & {} -K(\textbf{X}_1,\textbf{Y}_2)-K(\textbf{X}_3,\textbf{Y}_2)+2K(\textbf{X}_3,\textbf{Y}_3)-K(\textbf{X}_1,\textbf{Y}_3){}\\ {}{} & {} -K(\textbf{X}_2,\textbf{Y}_3), \end{aligned}$$

where \(K(\textbf{X}_i,\textbf{Y}_j)=\textbf{X}_i^\top \varvec{\Sigma }_{\textbf{X}\textbf{Y}}\textbf{Y}_j\). Again using the Hoeffding decomposition in Serfling (1980). we can show under assumptions (A1) and (A2) that

$$\begin{aligned} \frac{n(T_{n,p,q}(\textbf{X},\textbf{Y})-\textrm{tr}(\varvec{\Sigma }_{\textbf{X}\textbf{Y}}\varvec{\Sigma }_{\textbf{Y}\textbf{X}}))}{\sqrt{2\zeta ^2}}= \frac{\sum \limits _{1\le i< j\le n}\widetilde{L}(\textbf{Z}_i,\textbf{Z}_j)}{\sqrt{\left( {\begin{array}{c}n\\ 2\end{array}}\right) \zeta ^2}}+o_p(1), \end{aligned}$$

where \(\widetilde{L}(\textbf{Z}_i,\textbf{Z}_j) =L(\textbf{Z}_i,\textbf{Z}_j)-K(\textbf{X}_i,\textbf{Y}_i)-K(\textbf{X}_j,\textbf{Y}_j)+\textrm{tr}(\varvec{\Sigma }_{\textbf{X}\textbf{Y}}\varvec{\Sigma }_{\textbf{Y}\textbf{X}})\).

Note that \(\textrm{E}(\widetilde{L}(\textbf{Z},\textbf{Z}'))=\textrm{E}(\widetilde{L}(\textbf{Z},\textbf{Z}')\mid \textbf{Z})=\textrm{E}(\widetilde{L}(\textbf{Z},\textbf{Z}')\mid \textbf{Z}')=0\). Using similar arguments by replacing \(L(\textbf{Z}_i,\textbf{Z}_j)\) in the proof of Theorem 1 with \(\widetilde{L}(\textbf{Z}_i,\textbf{Z}_j)\), we can show that

$$\begin{aligned} \frac{\sum \limits _{1\le i< j\le n}\widetilde{L}(\textbf{Z}_i,\textbf{Z}_j)}{\sqrt{\left( {\begin{array}{c}n\\ 2\end{array}}\right) \zeta ^2}}\overset{d}{\longrightarrow } {\mathcal {N}}(0,1), \end{aligned}$$

which yields that

$$\begin{aligned} \frac{n(T_{n,p,q}(\textbf{X},\textbf{Y})-\textrm{tr}(\varvec{\Sigma }_{\textbf{X}\textbf{Y}}\varvec{\Sigma }_{\textbf{Y}\textbf{X}}))}{\sqrt{2\zeta ^2}}\overset{d}{\longrightarrow }\ {\mathcal {N}}(0,1). \end{aligned}$$

Applying similar technique in proving the ratio-consistency in theorem 1, it is easy to show that

$$\begin{aligned} \frac{\zeta ^2_n}{\zeta ^2}\overset{P}{\longrightarrow }\ 1, \end{aligned}$$

provided that conditions (A1) and (A2) hold. We thus complete this proof.

\(\square \)

Proof of Proposition 2

For \(\Vert \varvec{\beta }\Vert \ne 0\), we assume that U is a \(p\times p\) orthogonal matrix whose first column is \(\varvec{\beta }/\Vert \varvec{\beta }\Vert \). Then \(\textbf{S}=(S_1,\ldots ,S_p)^\top =U^\top \textbf{X}\sim {\mathcal {N}}(0_{p\times 1},\textbf{I}_p)\). Moreover, \(\textbf{S}'=(S_1',\ldots ,S_p')^\top =U^\top \textbf{X}'\) and \(\textbf{S}''=(S_1'',\ldots ,S_p'')^\top =U^\top \textbf{X}''\) can be viewed as copies of \(\textbf{S}\). Note that \(\textrm{E}(S_1)=0\), \(\textrm{E}(S_1^2)=1\) and \(\textrm{E}(S_1^4)=3\). Elemental calculations show that

$$\begin{aligned}{} & {} \zeta ^2= \textrm{E}\{L(\textbf{Z},\textbf{Z}')^2\}\\{} & {} \quad = \textrm{E}\{(\textbf{X}^\top \textbf{X}')^2(\textbf{X}^\top \varvec{\beta }+\varepsilon )^2({\textbf{X}'}^\top \varvec{\beta }+\varepsilon ')^2\}\\{} & {} \quad =\textrm{E}\{(\textbf{X}^\top \textbf{X}')^2((\textbf{X}^\top \varvec{\beta })^2+1)(({\textbf{X}'}^\top \varvec{\beta })^2+1)\}\\{} & {} \quad = \textrm{E}\{(\textbf{X}^\top \textbf{X}')^2((\textbf{X}^\top \varvec{\beta })^2({\textbf{X}'}^\top \varvec{\beta })^2+(\textbf{X}^\top \varvec{\beta })^2+ ({\textbf{X}'}^\top \varvec{\beta })^2+1)\}\\{} & {} \quad = \textrm{E}\{(\textbf{S}^\top {\textbf{S}}')^2(\Vert \varvec{\beta }\Vert ^4S_1^2{S_1'}^2 +\Vert \varvec{\beta }\Vert ^2S_1^2+\Vert \varvec{\beta }\Vert ^2{S_1'}^2+1)\}\\{} & {} \quad =(p+8)\Vert \varvec{\beta }\Vert ^4+2(p+2)\Vert \varvec{\beta }\Vert ^2+p,\\{} & {} \textrm{E}\{(\textbf{X}^\top \textbf{X}'\textbf{Y}^\top \textbf{Y}')^4\}\\{} & {} \quad = \textrm{E}\{(\textbf{X}^\top \textbf{X}')^4(\textbf{X}^\top \varvec{\beta }+\varepsilon )^4({\textbf{X}'}^\top \varvec{\beta }+\varepsilon ')^4\}\\{} & {} \quad = \textrm{E}\{(\textbf{X}^\top \textbf{X}')^4((\textbf{X}^\top \varvec{\beta })^4+6(\textbf{X}^\top \varvec{\beta })^2+3)(({\textbf{X}'}^\top \varvec{\beta })^4 +6({\textbf{X}'}^\top \varvec{\beta })^2+3)\}\\{} & {} \quad =\textrm{E}\{(\textbf{S}^\top {\textbf{S}}')^4 (\Vert \varvec{\beta }\Vert ^4S_1^4+6\Vert \varvec{\beta }\Vert ^2S_1^2+3) (\Vert \varvec{\beta }\Vert ^4{S'}_1^4+6\Vert \varvec{\beta }\Vert ^2{S'}_1^2+3)\}\\{} & {} \quad =O\{p^2(\Vert \varvec{\beta }\Vert ^2+1)^4\},\\{} & {} \textrm{E}\{(\textbf{X}^\top \textbf{X}'\textbf{Y}^\top \textbf{Y}'')^4\} \\{} & {} \quad = \textrm{E}\{(\textbf{X}^\top \textbf{X}')^4(\textbf{X}^\top \varvec{\beta }+\varepsilon )^4({\textbf{X}''}^\top \varvec{\beta }+\varepsilon '')^4\}\\{} & {} \quad = 9(\Vert \varvec{\beta }\Vert ^2+1)^2\textrm{E}\{\Vert \textbf{X}\Vert ^4((\textbf{X}^\top \varvec{\beta })^4+6(\textbf{X}^\top \varvec{\beta })^2+3)\}\\{} & {} \quad = 9(\Vert \varvec{\beta }\Vert ^2+1)^2\textrm{E}\{\Vert \textbf{S}\Vert ^4(\Vert \varvec{\beta }\Vert ^4S_1^4+6\Vert \varvec{\beta }\Vert ^2S_1^2+3)\}\\{} & {} \quad = O\{p^2(\Vert \varvec{\beta }\Vert ^2+1)^4\},\\{} & {} \textrm{E}\{(\textbf{X}^\top \textbf{X}')^4\}\textrm{E}\{(\textbf{Y}^\top \textbf{Y}')^4\} \\{} & {} \quad = \textrm{E}\{(\textbf{X}^\top \textbf{X}')^4\}\textrm{E}\{(\textbf{X}^\top \varvec{\beta }+\varepsilon )^4\}\textrm{E}\{({\textbf{X}'}^\top \varvec{\beta }+\varepsilon ')^4\}\\{} & {} \quad = 27(\Vert \varvec{\beta }\Vert ^2+1)^4\textrm{E}(\Vert \textbf{X}\Vert ^4)\\{} & {} \quad = 27p(p+2)(\Vert \varvec{\beta }\Vert ^2+1)^4. \end{aligned}$$

We then calculate \(\textrm{E}\{(\textbf{X}^\top \varvec{\Sigma }_{\textbf{X}\textbf{Y}}\textbf{Y})^2\}\) and \(\textrm{E}\{K(\textbf{X}^\top \varvec{\Sigma }_{\textbf{X}\textbf{Y}}\textbf{Y}')^2\}\). It is easy to show that \(\textbf{X}^\top \varvec{\Sigma }_{\textbf{X}\textbf{Y}}\textbf{Y}=\textbf{X}^\top \varvec{\beta }\textbf{Y}\) and \(\textbf{X}^\top \varvec{\Sigma }_{\textbf{X}\textbf{Y}}\textbf{Y}' =\textbf{X}^\top \varvec{\beta }\textbf{Y}'\). Then we can obtain that

$$\begin{aligned} \textrm{E}\{(\textbf{X}^\top \varvec{\Sigma }_{\textbf{X}\textbf{Y}}\textbf{Y})^2\}= & {} \textrm{E}\{(\textbf{X}^\top \varvec{\beta })^2((\textbf{X}^\top \varvec{\beta })^2 +2\varepsilon \textbf{X}^\top \varvec{\beta }+\varepsilon ^2)\} \\= & {} \textrm{E}\{(\textbf{X}^\top \varvec{\beta })^4\}+\textrm{E}\{(\textbf{X}^\top \varvec{\beta })^2\} \\= & {} \Vert \varvec{\beta }\Vert ^4\textrm{E}(S_1^4)+\Vert \varvec{\beta }\Vert ^2\textrm{E}(S_1^2)\\= & {} 3\Vert \varvec{\beta }\Vert ^4+\Vert \varvec{\beta }\Vert ^2,\\ \textrm{E}\{(\textbf{X}^\top \varvec{\Sigma }_{\textbf{X}\textbf{Y}}\textbf{Y}')^2\}= & {} \textrm{E}\{(\textbf{X}^\top \varvec{\beta })^2\}\textrm{E}\{({\textbf{X}'}^\top \varvec{\beta })^2 +2\varepsilon '{\textbf{X}'}^\top \varvec{\beta }+{\varepsilon '}^2\} \\= & {} \textrm{E}\{(\textbf{X}^\top \varvec{\beta })^2\}\textrm{E}\{({\textbf{X}'}^\top \varvec{\beta })^2+1\} \\= & {} \Vert \varvec{\beta }\Vert ^2\textrm{E}(S_1^2)\textrm{E}(\Vert \varvec{\beta }\Vert ^2{S'}_1^2+1)\\= & {} \Vert \varvec{\beta }\Vert ^4+\Vert \varvec{\beta }\Vert ^2. \end{aligned}$$

Next we consider \(\textrm{E}\{L_1(\textbf{Z},\textbf{Z}^{\prime })^2\}\).

Careful calculations show that

$$\begin{aligned}{} & {} \textrm{E}\{L_1(\textbf{Z},\textbf{Z}^{\prime })^2\}\\{} & {} \quad =\textrm{E}[\{\textrm{E}(L(\textbf{Z},\textbf{Z}'')L(\textbf{Z}',\textbf{Z}'')|(\textbf{Z},\textbf{Z}'))\}^2]\\{} & {} \quad = \textrm{E}[\{\textrm{E}(\textbf{Y}\textbf{Y}'{\textbf{X}''}^\top \textbf{X}{\textbf{X}'}^\top \textbf{X}''{\textbf{Y}''}^2|(\textbf{X},\textbf{Y},\textbf{X}',\textbf{Y}'))\}^2]\\{} & {} \quad = \textrm{E}[\{\textrm{E}(\textbf{Y}\textbf{Y}'{\textbf{X}''}^\top \textbf{X}{\textbf{X}'}^\top \textbf{X}''(({\textbf{X}''}^\top \varvec{\beta })^2+1)|(\textbf{X},\textbf{Y},\textbf{X}',\textbf{Y}'))\}^2]\\{} & {} \quad = \textrm{E}\left[ (\Vert \varvec{\beta }\Vert S_1+\varepsilon )^2(\Vert \varvec{\beta }\Vert S'_1+\varepsilon ')^2\right. \\{} & {} \left. \qquad \left\{ (3\Vert \varvec{\beta }\Vert ^2+1)S_1S'_1+(\Vert \varvec{\beta }\Vert ^2+1)\sum _{i=2}^pS_iS'_i\right\} ^2\right] \\{} & {} \quad = \textrm{E}\left[ (\Vert \varvec{\beta }\Vert ^4S_1^2{S'}_1^2+\Vert \varvec{\beta }\Vert ^2S_1^2+\Vert \varvec{\beta }\Vert ^2{S'}_1^2+1)\right. \\{} & {} \left. \qquad \left\{ (3\Vert \varvec{\beta }\Vert ^2+1)S_1S'_1+(\Vert \varvec{\beta }\Vert ^2+1)\sum _{i=2}^pS_iS'_i\right\} ^2\right] \\{} & {} \quad = (3\Vert \varvec{\beta }\Vert ^2+1)^4+(p-1)(\Vert \varvec{\beta }\Vert ^2+1)^4. \end{aligned}$$

Thus this proof is completed. \(\square \)

Proof of Theorem 3

(1) Let \(\lambda _{n,p_n,q_n}=n(p_nq_n)^{-1/4}(\log n)^{-3/4}\). It suffices to show that, for any \(\varepsilon >0\), almost surely \(\lambda _{n,p_n,q_n}\max \limits _{1\le i \le p_n,1\le j \le q_n}|{\mathcal {R}}_n(X_i,Y_j)|<\varepsilon \) for all n sufficiently large, that is,

$$\begin{aligned} \Pr \Big (\lambda _{n,p_n,q_n}\max \limits _{1\le i \le p_n,1\le j \le q_n} |{\mathcal {R}}_n(X_i,Y_j)|>\varepsilon \text { for infinitely many} \hspace{2mm} n \Big )=0. \end{aligned}$$

Applying the Borel–Cantelli lemma, it suffices to show that

$$\begin{aligned} \sum _{k=0}^{\infty } \Pr \left( \max \limits _{2^k\le n\le 2^{k+1}} \left( \lambda _{n,p_n,q_n}\max \limits _{1\le i\le p_n,1\le j \le q_n}|{\mathcal {R}}_n(X_i,Y_j)|\right) >\varepsilon \right) <\infty . \end{aligned}$$

Notice that \(T_{n,1,1}(X_i,X_i)\) and \(T_{n,1,1}(Y_j,Y_j)\) are U-statistics of order 4. By the Theorem 5.4.C in Serfling (1980), it is easy to check that for each i, \(1\le i \le p,1\le j\le q\), almost surely

$$\begin{aligned} \frac{T_{n,1,1}(X_i,X_i)}{\sigma ^2(X_i,X_i)} = 1+O\left( \frac{1}{\sqrt{n}}\right) , \frac{T_{n,1,1}(Y_j,Y_j)}{\sigma ^2(Y_j,Y_j)} = 1+O\left( \frac{1}{\sqrt{n}}\right) , \end{aligned}$$

provided the assumption (A3) holds. In addition, under \(H_0,\) \(\textrm{E}\{G(X_{i},X_{i}')H(Y_j,Y_j')\}=K(X_{i},Y_j) =0\). We can obtain from a standard result in section 32 of Loève (1978) and Markov’s inequality that

$$\begin{aligned} \begin{aligned}&\sum _{k=0}^{\infty }\Pr \left( \max \limits _{2^k\le n\le 2^{k+1}} (\lambda _{n,p_n,q_n}\max \limits _{1\le i\le p_n,1\le j\le q_n}|{\mathcal {R}}_n(X_i,Y_j)|)>\varepsilon \right) \\&\quad \le \sum _{k=0}^{\infty }\sum _{i=1}^{p_{2^{k+1}}}\sum _{j=1}^{q_{2^{k+1}}} \Pr \left( \max \limits _{2^k\le n\le 2^{k+1}} (\lambda _{n,p_n,q_n}|{\mathcal {R}}_n(X_i,Y_j)|)>\varepsilon \right) \\&\quad \le \sum _{k=0}^{\infty }\sum _{i=1}^{p_{2^{k+1}}}\sum _{j=1}^{q_{2^{k+1}}}\varepsilon ^{-4} \frac{2^{4(k+1)}}{(k+1)^{3}p_{2^{k+1}}q_{2^{k+1}}(\log 2)^{3}} \frac{\textrm{E}(|T_{2^k,1,1}(X_i,Y_j)|^4)}{\sigma ^4(X_i,X_i)\sigma ^4(Y_j,Y_j)}\\&\quad = \sum _{k=0}^{\infty } O((k+1)^{-3}), \end{aligned} \end{aligned}$$

where the last equality follows from Theorem 5.3.2 in Serfling (1980). Thus the result in (1) can be obtained.

(2) We need to show that almost surely

$$\begin{aligned} \Pr \left( \max \limits _{1\le i \le p,1\le j \le q} |{\mathcal {R}}_n(X_i,Y_j)| <\delta _{n,p,q} |S \ne \emptyset \right) \rightarrow 0, \hspace{5mm} n\rightarrow \infty . \end{aligned}$$
(43)

To obtain the result, it is sufficient to prove that

$$\begin{aligned} \Pr \left( \max \limits _{1\le i \le p,1\le j \le q} \frac{|T_{n,1,1}(X_i,Y_j)-\sigma ^2(X_i,Y_j)|}{\sqrt{\sigma ^2(X_i,X_i)\sigma ^2(Y_j,Y_j)}} >\delta _{n,p,q}|S \ne \emptyset \right) \rightarrow 0, \end{aligned}$$

since

$$\begin{aligned}{} & {} \Pr \left( \max \limits _{1\le i \le p,1\le j \le q} |{\mathcal {R}}_n(X_i,Y_j)| <\delta _{n,p,q}|S \ne \emptyset \right) \\{} & {} \quad \le \Pr \left( \max \limits _{1\le i \le p,1\le j \le q} \frac{|T_{n,1,1}(X_i,Y_j)-\sigma ^2(X_i,Y_j)|}{\sqrt{\sigma ^2(X_i,X_i)\sigma ^2(Y_j,Y_j)}} >\delta _{n,p,q}|S \ne \emptyset \right) . \end{aligned}$$

Write the projection of U-statistic \(T_{n,1,1}(X_i,Y_j)\) as

$$\begin{aligned} \widehat{T}_{n,1,1}(X_i,Y_j) = \sum _{t=1}^n \textrm{E}\{T_{n,1,1}(X_i,Y_j)|(X_{ti},Y_{tj})\}-(n-1)\sigma ^2(X_i,Y_j). \end{aligned}$$

Thus we obtain that

$$\begin{aligned}{} & {} T_{n,1,1}(X_i,Y_j)-\sigma ^2(X_i,Y_j)\\{} & {} \quad =\frac{4}{n}\sum _{t=1}^n\left\{ K(X_{ti},Y_{tj})-\sigma ^2(X_i,Y_j)\right\} + (T_{n,1,1}(X_i,Y_j)-\widehat{T}_{n,1,1}(X_i,Y_j)), \end{aligned}$$

where \(K(X_{ti},Y_{tj})=\sigma (X_i,Y_j)X_{ti}Y_{tj}\). Similar to prove (1), it is easy to check that almost surely

$$\begin{aligned} \max \limits _{1\le i \le p,1\le j \le q}\frac{|T_{n,1,1}(X_i,Y_j)-\widehat{T}_{n,1,1}(X_i,Y_j)|}{\sqrt{\sigma ^2(X_i,X_i)\sigma ^2(Y_j,Y_j)}} =o(\delta _{n,p,q}), \hspace{5mm} n \rightarrow \infty . \end{aligned}$$

Hence, we only need to show that

$$\begin{aligned} \Pr \left( \max \limits _{1\le i \le p,1\le j \le q} \left| \frac{4}{n}\sum _{t=1}^n\frac{K(X_{ti},Y_{tj})-\sigma ^2(X_i,Y_j)}{\sqrt{\sigma ^2(X_i,X_i)\sigma ^2(Y_j,Y_j)}}\right| >\delta _{n,p,q}|S \ne \emptyset \right) \rightarrow 0. \end{aligned}$$

Similarly, we have that

$$\begin{aligned}{} & {} \sum _{k=0}^{\infty }\Pr \left( \max \limits _{2^k\le n\le 2^{k+1}} (\lambda _{n,p_n,q_n}\max \limits _{1\le i \le p_n,1\le j \le q_n}\left| \frac{4}{n}\sum _{t=1}^n\frac{K(X_{ti},Y_{tj})-\sigma ^2(X_i,Y_j)}{\sqrt{\sigma ^2(X_i,X_i)\sigma ^2(Y_j,Y_j)}}\right| )>\varepsilon \right) \\{} & {} \quad \le \sum _{k=0}^{\infty } \sum _{i=1}^{p_{2^{k+1}}}\sum _{j=1}^{q_{2^{k+1}}}\varepsilon ^{-2}\frac{2^{2(k+1)}}{(k+1)^{3/2} (p_{2^{k+1}}q_{2^{k+1}})^{1/2} (\log 2)^{3/2}}\frac{\max \limits _{1\le i \le p_{2^{k+1}},1\le j \le q_{2^{k+1}}}\xi _{ij}}{2^{2k}\sigma ^2(X_i,X_i)\sigma ^2(Y_j,Y_j)}\\{} & {} \quad = \sum _{k=0}^{\infty } O((k+1)^{-3/2}), \end{aligned}$$

where the last equality is true when (A4) holds. Therefore, we have almost surely that

$$\begin{aligned} \max \limits _{1\le i \le p,1\le j\le q} \frac{|T_{n,1,1}(X_i,Y_j)-\sigma ^2(X_i,Y_j)|}{\sqrt{\sigma ^2(X_i,X_i)\sigma ^2(Y_j,Y_j)}} =o(\delta _{n,p,q}), \hspace{5mm} n \rightarrow \infty . \end{aligned}$$

This proof is thus completed.

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Guo, W. & Cui, H. On the test of covariance between two high-dimensional random vectors. Stat Papers (2023). https://doi.org/10.1007/s00362-023-01500-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00362-023-01500-6

Keywords

Navigation