Skip to main content
Log in

Preparation of Polymetal Powder Systems Fe–Ni–Co–Al in Aqueous Solutions and Their Physical Characteristics

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The possibility of preparation of a polymetallic dispersed Fe–Ni–Co–Al system in aqueous solutions by a redox process between iron(III), nickel(II), cobalt(II) ions and aluminum microparticles in aqueous solutions is shown. In this case, a structure is formed in the aqueous solution, which, from the standpoint of the phase composition, is a mechanical mixture of elemental metals. It has been found that the synthesized Fe–Ni–Co–Al system consists of metallic aluminum particles coated with elemental metals (iron, nickel, and cobalt) with a minimum content of the oxide phase. Additional HF modification of the studied sample of the polymetallic system in low pressure inductive discharge plasma leads to the formation of a number of intermetallic compounds, mainly CoFe (~60%) and FeNi (~15%), and also ensures particle spheroidization. The resulting intermetallic powder composition is potentially suitable for use in additive manufacturing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Lasalmonie, Intermetallics 14, 1123 (2006). https://doi.org/10.1016/j.intermet.2006.01.064

    Article  CAS  Google Scholar 

  2. W. Liu and J. N. Dupont, Metall. Mater. Trans. A 34, 2633 (2003). https://doi.org/10.1007/s11661-003-0022-3

    Article  Google Scholar 

  3. V. Chaudhary, M. S. K. K. Y. Nartu, S. A. Mantri, et al., J. Alloys Compd. 823, 153817 (2020). https://doi.org/10.1016/j.jallcom.2020.153817

  4. A. Paganotti, C. V. X. Bessa, C. C. S. Silva, et al., Mater. Chem. Phys. 261, 124215 (2021). https://doi.org/10.1016/j.matchemphys.2020.124215

  5. Y. Tanaka, R. Kainuma, T. Omori, and K. Ishida, Mater. Today: Proc. 2, S485 (2015). https://doi.org/10.1016/j.matpr.2015.07.333

    Article  Google Scholar 

  6. X. Tan, Y. Tang, Y. Tan, et al., Intermetallics 126, 106898 (2020). https://doi.org/10.1016/j.intermet.2020.106898

  7. P. Li, A. Wang, and C. T. Liu, Intermetallics 87, 21 (2017). https://doi.org/10.1016/j.intermet.2017.04.007

    Article  CAS  Google Scholar 

  8. M. P. Agustianingrum, S. Yoshida, N. Tsuji, and N. Park, J. Alloys Compd. 781, 866 (2019). https://doi.org/10.1016/j.jallcom.2018.12.065

    Article  CAS  Google Scholar 

  9. T. T. Zuo, R. B. Li, X. J. Ren, and Y. Zhang, J. Magn. Magn. Mater. 371, 60 (2014). https://doi.org/10.1016/j.jmmm.2014.07.023

    Article  CAS  Google Scholar 

  10. L. G. Betancourt-Cantera, F. Sánchez-de Jesús, A. M. Bolarín-Miró, et al., J. Mater. Res. Technol. 9, 14969 (2020). https://doi.org/10.1016/j.jmrt.2020.10.068

    Article  CAS  Google Scholar 

  11. K. Shafi, A. Gedanken, R. Prozorov, et al., J. Mater. Res. 15, 332 (2000). https://doi.org/10.1557/JMR.2000.0052

    Article  CAS  Google Scholar 

  12. V. Solanki, O. I. Lebedev, M. M. Seikh, et al., J. Magn. Magn. Mater. 420, 39 (2016). https://doi.org/10.1016/j.jmmm.2016.06.087

    Article  CAS  Google Scholar 

  13. A. Csik, K. Vad, E. Tóth-Kádár, and P. László, Electrochem. Commun. 11, 1289 (2009). https://doi.org/10.1016/j.elecom.2009.04.027

    Article  CAS  Google Scholar 

  14. Y. Zhang, R. Ma, S. Feng, et al., J. Magn. Magn. Mater. 497, 165982 (2020). https://doi.org/10.1016/j.jmmm.2019.165982

  15. A. Gayathri, S. Kiruthika, V. Selvarani, et al., Fuel 321, 124059 (2022). https://doi.org/10.1016/j.fuel.2022.124059

  16. Z. Wang, L. Cheng, R. Zhang, et al., J. Alloys Compd. 857, 158249 (2021). https://doi.org/10.1016/j.jallcom.2020.158249

  17. C. Koch, I. A. Ovid’ko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials. Fundamentals and Applications (Cambridge Univ. Press, Cambridge, 2007).

    Book  Google Scholar 

  18. A. F. Dresvyannikov and M. E. Kolpakov, Russ. J. Phys. Chem. A 80, 254 (2006). https://doi.org/10.1134/S0036024406020245

    Article  CAS  Google Scholar 

  19. A. F. Dresvyannikov, M. E. Kolpakov, and E. A. Ermolaeva, Russ. J. Phys. Chem. A 94, 1098 (2020). https://doi.org/10.1134/S0036024420060084

    Article  CAS  Google Scholar 

  20. A. F. Dresvyannikov and M. E. Kolpakov, Russ. J. Gen. Chem. 75, 155 (2005). https://link.springer.com/article/10.1007/s11176-005-0190-5

    Article  CAS  Google Scholar 

  21. Y.-T. Tseng, G.-X. Wu, J.-C. Lin, et al., J. Alloys Compd. 885, 160873 (2021). https://doi.org/10.1016/j.jallcom.2021.160873

  22. V. Torabinejad, M. Aliofkhazraei, S. Assareh, et al., J. Alloys Compd. 691, 841 (2016). https://doi.org/10.1016/j.jallcom.2016.08.329

    Article  CAS  Google Scholar 

  23. S. Hessami and C. W. Tobias, J. Electrochem. Soc. 136, 3611 (1989). https://doi.org/10.1149/1.2096519

    Article  CAS  Google Scholar 

  24. R. Bertazzoli and D. Pletcher, Electrochim. Acta 38, 671 (1993). https://doi.org/10.1016/0013-4686(93)80237-T

    Article  CAS  Google Scholar 

  25. D. Martinez-Blanco, P. Gorria, J. A. Blanco, et al., J. Phys.: Condens. Matter 20, 335213 (2008). https://doi.org/10.1088/0953-8984/20/33/335213

  26. A. F. Dresvyannikov, M. E. Kolpakov, and M. M. Miro-nov, Inorg. Mater.: Appl. Res. 3, 193 (2012). https://doi.org/10.1134/S2075113311030075

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State order for the provision of public services (performance of work) dated December 29, 2022, no. 075-01508-23-00. The study was carried out using the equipment of the Center for Collective Use “Nanomaterials and Nanotechnologies” of the Kazan National Research Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Dresvyannikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dresvyannikov, A.F., Kolpakov, M.E. & Ermolaeva, E.A. Preparation of Polymetal Powder Systems Fe–Ni–Co–Al in Aqueous Solutions and Their Physical Characteristics. Russ. J. Phys. Chem. 97, 2136–2143 (2023). https://doi.org/10.1134/S0036024423100072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423100072

Keywords:

Navigation