Skip to main content
Log in

Absorption Spectrum of H217O between 7900 and 9500 cm−1

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Absorption spectrum of water vapor highly enriched with 17O (more than 80%) was recorded using a Bruker IFS 125M Fourier spectrometer in the 7900–9500 cm−1 range at room temperature. The spectrum was recorded at a pressure of about 24 mbar with a spectral resolution of 0.02 cm−1. About 6300 lines with a minimal intensity of 5.0 × 10−27 cm/molecule are found in the spectrum recorded. 4835 recorded lines are assigned to 5185 transitions of five water isotopologues (H216O, H217O, H218O, HD16O, and HD17O). H217O lines are assigned to 14 vibration bands. Most of them are the lines of the ν2 + 2ν3, 3ν2 + ν3, ν1 + ν2 + ν3, ν1 + 3ν2, and 2ν1 + ν2 bands. The lines of the ν1 + 2ν2 + ν3 − ν2, 2ν1 + ν3 − ν2, and 2ν1 + 2ν2 − ν2 hot bands are assigned for the first time. The lines assigned allow us to determine 153 new vibration–rotation energies of nine vibrational states of the H217O molecule and 22 energies of two states of the HD17O molecule. The obtained data are compared with the results of previous studies, HITRAN2020 spectroscopic database, and W2020 list.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. N. Tolchenov and J. Tennyson, “Water line parameters for weak lines in the range 7400–9600 cm–1,” J. Mol. Spectrosc. 231, 23–27 (2005). https://doi.org/10.1016/j.jms.2004.12.001

    Article  ADS  Google Scholar 

  2. R. Schermaul, R. C. M. Learner, A. A. D. Canas, J. W. Brault, O. L. Polyansky, D. Belmiloud, N. F. Zobov, and J. Tennyson, “Weak line water vapor spectra in the region 13200–15000 cm–1,” J. Mol. Spectrosc. 211, 169–178 (2002). https://doi.org/10.1006/jmsp.2001.8498

    Article  ADS  Google Scholar 

  3. A.-W. Liu, S.-M. Hu, C. Camy-Peyret, J.-Y. Mandin, O. Naumenko, and B. Voronin, “Fourier transform absorption spectra of H2 17O and H2 18O in the 8000–9400 cm–1 spectral region,” J. Mol. Spectrosc. 237, 53–62 (2006). https://doi.org/10.1016/j.jms.2006.02.008

    Article  ADS  Google Scholar 

  4. L. Regalia, C. Oudot, S. Mikhailenko, L. Wang, X. Thomas, and A. Jenouvrier, “Von Der Heyden P. water vapor line parameters from 6450 to 9400 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 136, 119–136 (2014). https://doi.org/10.1016/j.jqsrt.2013.11.019

    Article  ADS  Google Scholar 

  5. S. Mikhailenko, S. Kassi, L. Wang, and A. Campargue, “The absorption spectrum of water in the 1.25 μm transparency window (7408–7920 cm–1),” J. Mol. Spectrosc. 269, 92–103 (2011). https://doi.org/10.1016/j.jms.2011.05.005

    Article  ADS  Google Scholar 

  6. A. Campargue, S. N. Mikhailenko, B. G. Lohan, E. V. Karlovets, D. Mondelain, and S. Kassi, “The absorption spectrum of water vapor in the 1.25 μm atmospheric window (7911–8337 cm–1),” J. Quant. Spectrosc. Radiat. Transfer 157, 135–152 (2015). https://doi.org/10.1016/j.jqsrt.2015.02.011

    Article  ADS  Google Scholar 

  7. D. Modelain, S. N. Mikhailenko, E. V. Karlovets, S. Beguer, S. Kassi, and A. Campargue, “Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 203, 206–212 (2017). https://doi.org/10.1016/j.jqsrt.2017.03.029

    Article  ADS  Google Scholar 

  8. http://spectra.iao.ru/molecules/simlaunch?mol=1. Cited January 1, 2022.

  9. H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618–4639 (1997). https://doi.org/10.1063/1.473987

    Article  ADS  Google Scholar 

  10. D. W. Schwenke and H. Partridge, “Convergence testing of the analytic representation of an ab initio dipole moment function for water: improved fitting yields improved intensities,” J. Chem. Phys. 113, 6592–6597 (2000). https://doi.org/10.1063/1.1311392

    Article  ADS  Google Scholar 

  11. S. N. Mikhailenko, O. V. Naumenko, A. V. Nikitin, I. A. Vasilenko, A.-W. Liu, K.-F. Song, H.-Y. Ni, and S.-M. Hu, “Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 113, 653–669 (2012). https://doi.org/10.1016/j.jqsrt.2012.02.009

    Article  ADS  Google Scholar 

  12. S. S. Vasilchenko, S. N. Mikhailenko, V. I. Serdyukov, and L. N. Sinitsa, “The absorption spectrum of H2 18O in the range 13400–14460 cm–1,” Opt. Spectrosc 113, 451–455 (2012). https://doi.org/10.1134/S0030400X12110069

    Article  ADS  Google Scholar 

  13. S. N. Mikhailenko, V. I. Serdyukov, and L. N. Sinitsa, “LED-based Fourier transform spectroscopy of H2 18O in the 15000–16000 cm–1 range,” J. Quant. Spectrosc. Radiat. Transfer 156, 36–46 (2015). https://doi.org/10.1016/j.jqsrt.2015.02.001

    Article  ADS  Google Scholar 

  14. S. N. Mikhailenko, V. I. Serdyukov, and L. N. Sinitsa, “Study of H2 16O and H2 18O absorption in the 16,460–17,200 cm–1 range using LED-based Fourier transform spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 217, 170–177 (2018). https://doi.org/10.1016/j.jqsrt.2018.05.032

    Article  ADS  Google Scholar 

  15. H. J. Bernstein and G. Herzberg, “Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. I. The spectrum of fluoroform (CHF3) from 2.4μ to 0.7μ,” J. Chem. Phys. 16, 30–39 (1948). https://doi.org/10.1063/1.1746650

    Article  ADS  Google Scholar 

  16. V. I. Serdyukov, L. N. Sinitsa, S. S. Vasil’chenko, and B. A. Voronin, “Highsensitive Fourier-transform spectroscopy with shortbase multipass absorption cells,” Atmos. Ocean. Opt. 26 (4), 329–336 (2013). https://doi.org/10.1134/S1024856013040131

    Article  Google Scholar 

  17. S. S. Vasil’chenko and V. I. Serdukov, “Emission spectrum of neon as a frequency reference for spectrophotometers,” Atmos. Ocean. Opt. 26 (2), 154–158 (2013). https://doi.org/10.1134/S1024856013020139

    Article  Google Scholar 

  18. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tόbiás, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. Vander Auwera, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022). https://doi.org/10.1016/j.jqsrt.2021.107949

    Article  Google Scholar 

  19. A. V. Nikitin and R. V. Kochanov, “Vizualization and identification of spectra by the SpectraPlot program,” Opt. Atmos. Okeana 24 (11), 936–941 (2011). https://doi.org/ao.iao.ru/en/content/vol.24-2011/iss.11/2

    Google Scholar 

  20. S.-M. Hu, S.-G. He, J.-J. Zheng, X.-H. Wang, Y. Ding, and Q.-S. Zhu, “High-resolution analysis of the ν2 + 2ν3 band of HDO,” Chinese Phys. 10, 1021–1027 (2001). https://doi.org/10.1088/1009-1963/10/11/306

    Article  ADS  Google Scholar 

  21. O. V. Naumenko, S. Voronina, and S.-M. Hu, “High resolution Fourier transform spectrum of HDO in the 7500–8200 cm–1 region: Revisited,” J. Mol. Spectrosc. 227, 151–157 (2004). https://doi.org/10.1016/j.jms.2004.06.002

    Article  ADS  Google Scholar 

  22. L. Regalia, X. Thomas, T. Rennesson, and S. Mikhailenko, “Line parameters of water vapour enriched by 18O from 6525 to 8011 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 235, 257–271 (2019). https://doi.org/10.1016/j.jqsrt.2019.06.031

    Article  ADS  Google Scholar 

  23. L. Regalia and S. Mikhailenko, “Spectral line parameters of H2 18O molecule in the 8050–9300 cm–1 region,” in Abstracts of Reports of XIX Symposium on High Resolution Molecular Spectroscopy HighRus-2019 (Publishing House of IAO SB RAS, Tomsk, 2019), p. 37. https://symp.iao.ru/files/symp/hrms/19/ru/abstr_ 10531.pdf. Cited January 1, 2022.

  24. T. Furtenbacher, R. Tόbiás, J. Tennyson, O. L. Polyansky, A. A. Kyuberis, R. I. Ovsyannikov, N. F. Zobov, and A. G. Csaszar, “The W2020 database of validated rovibrational experimental transitions and empirical energy levels of water isotopologues. II. H2 17O and H2 18O with an update to H2 16O,” J. Phys. Chem. Ref. Data 49, 043103 (2020). https://doi.org/10.1063/5.0030680

    Article  ADS  Google Scholar 

  25. I. I. Bubukina, N. F. Zobov, O. L. Polyansky, S. V. Shirin, and S. N. Yurchenko, “Optimized semiempirical potential energy surface for H2 16O up to 26 000 cm–1,” Opt. Spectrosc. 110 (2), 160–166 (2011).

    Article  ADS  Google Scholar 

  26. S. N. Mikhailenko, S. Kassi, D. Mondelain, R. R. Gamache, and A. Campargue, “A spectroscopic database for water vapor between 5850 and 8340 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 179, 198–216 (2016). https://doi.org/10.1016/j.jqsrt.2016.03.035

    Article  ADS  Google Scholar 

  27. S. Mikhailenko, S. Kassi, D. Mondelain, and A. Campargue, “Water vapor absorption between 5690 and 8340 cm–1: Accurate empirical line centers and validation tests of calculated line intensities,” J. Quant. Spectrosc. Radiat. Transfer 245, 106840 (2020). https://doi.org/10.1016/j.jqsrt.2020.106840

    Article  Google Scholar 

  28. A. A. Kyuberis, N. F. Zobov, O. V. Naumenko, B. A. Voronin, O. L. Polyansky, L. Lodi, A. Liu, S.‑M. Hu, and J. Tennyson, “Room temperature line lists for deuterated water,” J. Quant. Spectrosc. Radiat. Transfer 203, 175–185 (2017). https://doi.org/10.1016/j.jqsrt.2017.06.026

  29. J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Csaszar, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, L. Daumont, A. Z. Fazliev, T. Furtenbacher, I. E. Gordon, S. N. Mikhailenko, and S. V. Shirin, “IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I. Energy levels and transition wavenumbers for H2 17O and H2 18O,” J. Quant. Spectrosc. Radiat. Transfer 110, 573–596 (2009). https://doi.org/10.1016/j.jqsrt.2009.02.014

  30. L. Lodi and J. Tennyson, “Line lists for H2 18O and H2 17O based on empirical line positions and ab initio intensities,” J. Quant. Spectrosc. Radiat. Transfer 113, 850–858 (2012). https://doi.org/10.1016/j.jqsrt.2012.02.023

    Article  ADS  Google Scholar 

  31. O. L. Polyansky, A. A. Kyuberis, L. Lodi, J. Tennyson, S. N. Yurchenko, R. I. Ovsyannikov, and N. F. Zobov, “ExoMol molecular line lists XIX: High-accuracy computed hot line lists for H2 16O and H2 18O,” Mon. R. Astron. Soc. 466, 1363–1371 (2017). https://doi.org/10.1093/mnras/stw3125

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Serdyukov, L. N. Sinitsa or S. N. Mikhailenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, V.I., Sinitsa, L.N. & Mikhailenko, S.N. Absorption Spectrum of H217O between 7900 and 9500 cm−1. Atmos Ocean Opt 36, 454–464 (2023). https://doi.org/10.1134/S1024856023050147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023050147

Keywords:

Navigation