Skip to main content
Log in

The origin of fluorite-barite mineralization at the interface between the Paris Basin and its Variscan basement: insights from fluid inclusion chemistry and isotopic (O, H, Cl) composition

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We provide new constraints for the fluid flow system at the origin of two F-Ba deposits located at the unconformity between the south of the Paris Basin and the northern edge of the French Massif Central. We used microthermometry and bulk crush-leach analyses to determine isotope ratios of mineralizing fluids (δ18O, δD, δ37Cl), together with cation and anion composition of fluid inclusions hosted by fluorite. Chlorinity and Cl/Br molar ratios (212–521) indicate the involvement of a brine, whose origin likely corresponds to Triassic evaporated seawater compatible with supratidal dolomitic facies preserved nearby. Microthermometry reveals high Ca/Na ratios, suggesting that the brine composition evolved from hydrothermal alteration of the Variscan basement and partial dissolution and replacement of the host sedimentary rocks. δ37Cl values are lower than the expected value of evaporated seawater, suggesting Cl isotope fractionation by ion filtration in clay-rich horizons. Fluorite crystallized at minimum temperatures of 70 to 110 °C, 10–40 °C warmer than the host Triassic sedimentary rocks. Ascending brines were expelled during the Early Cretaceous and experienced a drop in pressure and temperature, together with possible mixing with the SO4-rich pore water of the sedimentary rocks, causing precipitation of silica, followed by fluorite and barite, forming a stratabound deposit similar to those found in many areas in Western Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrinier P, Destrigneville C, Giunta T, Bonifacie M, Bardoux G, Andre J, Lucazeau F (2019) Strong impact of ion filtration on the isotopic composition of chlorine in young clay-rich oceanic sediment pore fluids. Geochimica et Cosmochimica Acta 245:525–541. https://doi.org/10.1016/j.gca.2018.11.013

    Article  Google Scholar 

  • Agrinier P, Bonifacie M, Bardoux G, Lucazeau F, Giunta T, Ader M (2021) Chlorine isotope data of chlorides challenge the pore fluid paradigm. Geochimica et Cosmochimica Acta 300:258–278. https://doi.org/10.1016/j.gca.2021.02.034

    Article  Google Scholar 

  • Aquilina L, Pauwels H, Genter A, Fouillac C (1997) Water-rock interaction processes in the triassic sandstone and the granitic basement of the Rhine graben: geochemical investigation of a geothermal reservoir. Geochimica et Cosmochimica Acta 61:4281–4295. https://doi.org/10.1016/S0016-7037(97)00243-3

    Article  Google Scholar 

  • Arnórsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. Chem Geotherm Geothermal Investigations: Geochimica Et Cosmochimica Acta 47:567–577. https://doi.org/10.1016/0016-7037(83)90278-8

    Article  Google Scholar 

  • Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G (2007) Contrasting paleofluid systems in the continental basement: a fluid inclusion and stable isotope study of hydrothermal vein mineralization. Schwarzwald District, Germany: Geofluids 7:123–147. https://doi.org/10.1111/j.1468-8123.2007.00169.x

    Article  Google Scholar 

  • Banks DA, Davies GR, Yardley BWD, McCaig AM, Grant NT (1991) The chemistry of brines from an Alpine thrust system in the Central Pyrenees: an application of fluid inclusion analysis to the study of fluid behaviour in orogenesis. Geochemica and Cosmochemica Acta 55:1021–1030

    Article  Google Scholar 

  • Banks DA, Giuliani G, Yardley BWD, Cheilletz A (2000) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineralium Deposita 35:699–713. https://doi.org/10.1007/s001260050273

    Article  Google Scholar 

  • Banks DA, Boyce AJ, Samson IM (2002) Constraints on the origins of fluids forming irish zn-pb-Ba deposits: evidence from the composition of fluid inclusions. Economic Geology 3:471–480. https://doi.org/10.2113/gsecongeo.97.3.471

    Article  Google Scholar 

  • Barbarand J, Quesnel F, Pagel M (2013) Lower paleogene denudation of upper cretaceous cover of the morvan massif and southeastern Paris Basin (france) revealed by AFT thermochronology and constrained by stratigraphy and paleosurfaces. Tectonophysics 608:1310–1327. https://doi.org/10.1016/j.tecto.2013.06.011

    Article  Google Scholar 

  • Benard F, De Charpal O, Mascle A, Tremolieres P (1985) Mise en évidence D’une phase de serrage Est-Ouest au crétacé inférieur en Europe de L’ouest : comptes-rendus des séances de l’académie des sciences. série 2. Mécanique-Physique, Chimie, Sciences De L’univers, Sciences De La Terre 300:765–768

    Google Scholar 

  • Bernachot I, Garcia B, Ader M, Peysson Y, Rosenberg E, Bardoux G, Agrinier P (2017) Solute transport in porous media during drying: the chlorine isotopes point of view. Chemical Geology 466:102–115. https://doi.org/10.1016/j.chemgeo.2017.05.024

    Article  Google Scholar 

  • Bill H (1982) Origin of the coloration of yellow fluorites: the O3− center structure and dynamical aspects. J Chem Phys 76:219–224. https://doi.org/10.1063/1.442761

    Article  Google Scholar 

  • Bill H, Calas G (1978) Color centers, associated rare-earth ions and the origin of coloration in natural fluorites. Phys Chem Min 3:117–131. https://doi.org/10.1007/BF00308116

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-nacl solutions. Geochimica et Cosmochimica Acta 57:683–684. https://doi.org/10.1016/0016-7037(93)90378-A

    Article  Google Scholar 

  • Boirat JM, Touray JC, Soulé de Lafont D (1980) Nouvelles observations Sur le gisement stratiforme de fluorine et barytine de courcelles-fremoy (morvan, France). Comptes Rendus de l’Académie des Sciences D:5–8

    Google Scholar 

  • Boiron MC, Cathelineau M, Banks DA, Buschaert S, Fourcade S, Coulibaly Y, Michelot JL, Boyce A (2002) Fluid transfers at a basement/cover interface part II large-scale introduction of chlorine into the basement by mesozoic basinal brines. Chemical Geology 192:121–140. https://doi.org/10.1016/S0009-2541(02)00191-2

    Article  Google Scholar 

  • Boiron M-C, Cathelineau M, Richard A (2010) Fluid flows and metal deposition near basement /cover unconformity: lessons and analogies from pb-zn-F-Ba systems for the understanding of proterozoic U deposits. Geofluids. https://doi.org/10.1111/j.1468-8123.2010.00289.x

    Article  Google Scholar 

  • Bois M (1978) La base de la transgression mésozoïque sur la bordure ouest et nord du Morvan [Thèse de doctorat]: Université de Dijon, 258, 2

  • Bons PD, Fusswinkel T, Gomez-Rivas E, Markl G, Wagner T, Walter B (2014) Fluid mixing from below in unconformityrelated hydrothermal ore deposits. Geology 42:1035–1038. https://doi.org/10.1130/G35708.1

    Article  Google Scholar 

  • Boulègue J, Benedetti M, Gauthier B, Bosch B (1990) Les fluides dans le socle du sondage GPF sancerre-couy. Bulletin de la Société Géologique de France 8:789–795. https://doi.org/10.2113/gssgfbull.VI.5.789

    Article  Google Scholar 

  • Brigaud B, Bonifacie M, Pagel M, Blaise T, Calmels D, Haurine F, Landrein P (2020) Past hot fluid flows in limestones detected by Δ47–(U-pb) and not recorded by other geothermometers. Geology 48:851–856. https://doi.org/10.1130/G47358.1

    Article  Google Scholar 

  • Burisch M, Marks MAW, Nowak M, Markl G (2016) The effect of temperature and cataclastic deformation on the composition of upper crustal fluids — an experimental approach. Chemical Geology 433:24–35. https://doi.org/10.1016/j.chemgeo.2016.03.031

    Article  Google Scholar 

  • Burisch M, Walter BF, Markl G (2017) Silicification of hydrothermal gangue minerals in pb-zn-cu-fluorite-quartz-baryte veins. Can Mineral 55:501–514. https://doi.org/10.3749/canmin.1700005

    Article  Google Scholar 

  • Burisch M, Walter BF, Gerdes A, Lanz M, Markl G (2018) Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the schwarzwald mining district SW Germany. Geochimica Et Cosmochimica Acta 223:259–278. https://doi.org/10.1016/j.gca.2017.12.002

    Article  Google Scholar 

  • Burisch M, Markl G, Gutzmer J (2022) Breakup with benefits - hydrothermal mineral systems related to the disintegration of a supercontinent. Earth and Planetary Sci Lett 580:117373. https://doi.org/10.1016/j.epsl.2022.117373

    Article  Google Scholar 

  • Burnol L, Lhégu J (1957) Chitry-les-mines (nièvre). BRGM Rapport d’ensemble A 1273:194

    Google Scholar 

  • Cardellach E, Canals A, Tritlla J (1990) Late and post-hercynian low temperature veins in the catalonian coastal ranges. Acta geologica hispanica 25:75–81

    Google Scholar 

  • Carrat HG (1969) Evolution de la granitisation et du volcanisme dans le morvan. Bulletin de la Société Géologique de France S7-XI:574–587. https://doi.org/10.2113/gssgfbull.S7-XI.4.574

    Article  Google Scholar 

  • Casanova J, Bodénan F, Négrel P, Azaroual M (1999) Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the cézallier hydrothermal springs (massif central, France). Sedimentary Geology 126:125–145

    Article  Google Scholar 

  • Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965. https://doi.org/10.1093/petrology/27.4.945

    Article  Google Scholar 

  • Cathelineau M, Boiron M-C, Fourcade S, Ruffet G, Clauer N, Belcourt O, Coulibaly Y, Banks DA, Guillocheau F (2012) A major late jurassic fluid event at the basin/basement unconformity in western France: 40Ar/39Ar and K-ar dating, fluid chemistry, and related geodynamic context. Chemical Geology 322–323:99–120. https://doi.org/10.1016/j.chemgeo.2012.06.008

    Article  Google Scholar 

  • Chu H, Chi G, Chou I-M (2016) Freezing and melting behaviors of H2O-NaCl-CaCl2 solutions in fused silica capillaries and glass-sandwiched films: implications for fluid inclusion studies. Geofluids 16:518–532. https://doi.org/10.1111/gfl.12173

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Davaine JJ (1980) Les croûtes silico-fluorées mésozoïques du bazois, description et modèle d’évolution. Mémoire BRGM Mémoire du BRGM 104:211–241

    Google Scholar 

  • De Graaf S, Lüders V, Banks DA, Sośnicka M, Reijmer JJG, Kaden H, Vonhof HB (2019) Fluid evolution and ore deposition in the Harz Mountains revisited: isotope and crush-leach analyses of fluid inclusions. Mineralium Deposita 55:47–62. https://doi.org/10.1007/s00126-019-00880-w

    Article  Google Scholar 

  • De Wever P, Guillocheau F, Reynaud J-Y, Vennin E, Robin C, Cornée A, Rouby D (2002) Deux siècles de stratigraphie dans le bassin de Paris. Comptes Rendus Palevol 1:399–414. https://doi.org/10.1016/S1631-0683(02)00071-4

    Article  Google Scholar 

  • De Launay L (1913) Traité de métallogénie, gîtes minéraux et métallifères. Gisements, recherche, production et commerce des minéraux utiles et minerais, description des principales mines.: C. Béranger

  • Delbart C (2014) Variabilité spatio-temporelle du fonctionnement d’un aquifère karstique du Dogger: suivis hydrodynamiques et géochimiques multifréquences; traitement du signal des réponses physiques et géochimiques [Thèse de doctorat]: Université Paris Sud - Paris XI, 233

  • Deloule E (1982) The genesis of fluorspar hydrothermal deposits at montroc and le burc, the Tarn, as deduced from fluid inclusion analysis. Economic Geology 77:1867–1874. https://doi.org/10.2113/gsecongeo.77.8.1867

    Article  Google Scholar 

  • Derome D, Cathelineau M, Cuney M, Fabre C, Lhomme T (2005) Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a raman and laser-induced breakdown spectroscopic study of fluid inclusions. Econ Geol 100:1529–1545. https://doi.org/10.2113/gsecongeo.100.8.1529

    Article  Google Scholar 

  • Desaulniers DE, Kaufmann RS, Cherry JA, Bentley HW (1986) 37Cl-35Cl variations in a diffusion-controlled groundwater system. Geochimica et Cosmochimica Acta 50:1757–1764. https://doi.org/10.1016/0016-7037(86)90137-7

    Article  Google Scholar 

  • Diamond LW (2003) Systematics of H2O inclusions in fluid inclusions : analysis and interpretation. Mineral Assoc Canada Short Course Series 32:55–78

    Google Scholar 

  • Diamond LW, Wanner C, Waber HN (2018) Penetration depth of meteoric water in orogenic geothermal systems. Geology 46:1063–1066. https://doi.org/10.1130/G45394.1

    Article  Google Scholar 

  • Eggenkamp HGM (1994) δ37Cl: the geochemistry of chlorine isotopes [Thèse de doctorat]: Faculteit Aardwetenschappen, Universiteit Utrecht, 171

  • Eggenkamp H (2014) The geochemistry of stable chlorine and bromine isotopes: Berlin, Heidelberg, Springer Berlin Heidelberg, Advances in Isotope Geochemistry 174 https://doi.org/10.1007/978-3-642-28506-6

  • Eggenkamp HGM, Louvat P, Griffioen J, Agrinier P (2019) Chlorine and bromine isotope evolution within a fully developed upper permian natural salt sequence. Geochimica et Cosmochimica Acta 245:316–326. https://doi.org/10.1016/j.gca.2018.11.010

    Article  Google Scholar 

  • Etheve N, Mohn G, Frizon de Lamotte D, Roca E, Tugend J, Gómez-Romeu J (2018) Extreme mesozoic crustal thinning in the eastern Iberia margin: the example of the Columbrets Basin (valencia trough). Tectonics 37:636–662. https://doi.org/10.1002/2017TC004613

    Article  Google Scholar 

  • Fehn U, Snyder GT (2005) Residence times and source ages of deep crustal fluids: interpretation of 129I and 36Cl results from the KTB-VB drill site, Germany. Geofluids 5:42–51. https://doi.org/10.1111/j.1468-8123.2004.00105.x

    Article  Google Scholar 

  • Fontes J-C, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France 1 brines associated with triassic salts. Chem Geol 109:149–175. https://doi.org/10.1016/0009-2541(93)90068-T

    Article  Google Scholar 

  • Foucaud Y, Badawi M, Filippov LO, Filippova IV, Lebègue S (2018) Surface properties of fluorite in presence of water: an atomistic investigation. The Journal of Physical Chemistry B 122:6829–6836. https://doi.org/10.1021/acs.jpcb.8b02717

    Article  Google Scholar 

  • Fouillac C, Fouillac A-M (1989) Etude chimique et isotopique des sources minérales de l’Ardèche: Hydrogeology Journal 229–236

  • Fourcade S, Michelot JL, Buschaert S, Cathelineau M, Freiberger R, Coulibaly Y, Aranyossy JF (2002) Fluid transfers at the basement/cover interface part I. subsurface recycling of trace carbonate from granitoid basement rocks (france). Chemical Geology 192:99–119. https://doi.org/10.1016/S0009-2541(02)00192-4

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for the Na/K geothermometer. Trans Geotherm Resour Council 3:221–224

    Google Scholar 

  • Frape SK, Fritz P, McNutt RH (1984) Water-rock interaction and chemistry of groundwaters from the Canadian shield. Geochimica et Cosmochimica Acta 48:1617–1627. https://doi.org/10.1016/0016-7037(84)90331-4

    Article  Google Scholar 

  • Fusswinkel T, Wagner T, Wälle M, Wenzel T, Heinrich CA, Markl G (2013) Fluid mixing forms basement-hosted pb-zn deposits: insight from metal and halogen geochemistry of individual fluid inclusions. Geology 41:679–682. https://doi.org/10.1130/G34092.1

    Article  Google Scholar 

  • Galindo C, Tornos F, Darbyshire DPF, Casquet C (1994) The age and origin of the barite-fluorite (pb-zn) veins of the sierra del Guadarrama (spanish central system, Spain): a radiogenic (nd, sr) and stable isotope study. Chem Geol 112:351–364. https://doi.org/10.1016/0009-2541(94)90034-5

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria derivation of na-K-mg-ca geoindicators. Geochimica Et Cosmochimica Acta 52:2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Gigoux M, Delpech G, Guerrot C, Pagel M, Augé T, Négrel P, Brigaud B (2015) Evidence for an early cretaceous mineralizing event above the basement/sediment unconformity in the intracratonic Paris Basin: paragenetic sequence and sm-nd dating of the world-class Pierre-perthuis stratabound fluorite deposit. Mineralium Deposita 50:455–463. https://doi.org/10.1007/s00126-015-0592-1

    Article  Google Scholar 

  • Gigoux M, Brigaud B, Pagel M, Delpech G, Guerrot C, Augé T, Négrel P (2016) Genetic constraints on world-class carbonate- and siliciclastic-hosted stratabound fluorite deposits in Burgundy (france) inferred from mineral paragenetic sequence and fluid inclusion studies. Ore Geol Rev 72:940–962. https://doi.org/10.1016/j.oregeorev.2015.09.013

    Article  Google Scholar 

  • Gigoux, M., 2015, Origine des minéralisations stratiformes de fluorine de la bordure sud-est du bassin de Paris [Thèse de doctorat]: Université Paris-Sud, 307

  • Gleeson SA, Turner WA (2007) Fluid inclusion constraints on the origin of the brines responsible for pb-zn mineralization at pine point and coarse non-saddle and saddle dolomite formation in southern Northwest Territories. Geofluids 7:51–68. https://doi.org/10.1111/j.1468-8123.2006.00160.x

    Article  Google Scholar 

  • Gleeson SA, Yardley BWD, Munz IA, Boyce AJ (2003) Infiltration of basinal fluids into high-grade basement, South Norway: sources and behaviour of waters and brines. Geofluids 3:33–48. https://doi.org/10.1046/j.1468-8123.2003.00047.x

    Article  Google Scholar 

  • Godon A, Jendrzejewski N, Eggenkamp HGM, Banks DA, Ader M, Coleman ML, Pineau F (2004) A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material. Chem Geol 207:1–12. https://doi.org/10.1016/j.chemgeo.2003.11.019

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals: SEPM (Society for Sedimentary Geology). Short Course Notes 31:213. https://doi.org/10.2110/scn.94.31

    Article  Google Scholar 

  • Guillocheau F et al. (2000) Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta 58. https://doi.org/10.1080/09853111.2000.11105372.

  • Haschke S, Gutzmer J, Wohlgemuth-Ueberwasser CC, Kraemer D, Burisch M (2021) The niederschlag fluorite-(barite) deposit, Erzgebirge/germany—a fluid inclusion and trace element study. Mineralium Deposita 56:1071–1086. https://doi.org/10.1007/s00126-020-01035-y

    Article  Google Scholar 

  • Kaufmann R, Long A, Bentley H, Davis S (1984) Natural chlorine isotope variations. Nature 309:338–340. https://doi.org/10.1038/309338a0

    Article  Google Scholar 

  • Kharaka YK, Lico MS, Law-Leroy M (1982) Chemical geothermometers applied to formation waters, Gulf of Mexico and California basins. AAPG Bulletin 66:588

    Google Scholar 

  • Kishima N, Sakai H (1980) Oxygen-18 and deuterium determination on a single water sample of a few milligrams. Anal Chem 52:356–358. https://doi.org/10.1021/ac50052a038

    Article  Google Scholar 

  • Kloppmann W, Girard J-P, Négrel P (2002) Exotic stable isotope compositions of saline waters and brines from the crystalline basement. Chem Geol 184:49–70. https://doi.org/10.1016/S0009-2541(01)00352-7

    Article  Google Scholar 

  • Köhler J, Schönenberger J, Upton B, Markl G (2009) Halogen and trace-element chemistry in the Gardar Province, South Greenland: subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos 113:731–747. https://doi.org/10.1016/j.lithos.2009.07.004

    Article  Google Scholar 

  • Kovalevych V, Marshall T, Peryt T, Petrychenko O, Zhukova S (2006) Chemical composition of seawater in neoproterozoic: results of fluid inclusion study of halite from salt range (pakistan) and Amadeus Basin (australia). Precambrian Research 144:39–51. https://doi.org/10.1016/j.precamres.2005.10.004

    Article  Google Scholar 

  • Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, Edel JB, Štípská P (2014) The moldanubian zone in the french massif Central Vosges/schwarzwald and bohemian massif revisited: differences and similarities. Geol Soc, London, Special Publications 405:7–44. https://doi.org/10.1144/SP405.14

    Article  Google Scholar 

  • Lefavrais-Raymond A, Lhégu J, Renaud L, Scolari G (1965) Contribution à l’étude géologique et métallogénique du nivernais septentrional (region de chitry-les-mines, nièvre). Bull BRGM 2:1–22

    Google Scholar 

  • Lenoir L, Blaise T, Somogyi A, Brigaud B, Barbarand J, Boukari C, Nouet J, Brézard-Oudot A, Pagel M (2021) Uranium incorporation in fluorite and exploration of U-pb dating. Geochronology 3:199–227. https://doi.org/10.5194/gchron-3-199-2021

    Article  Google Scholar 

  • Lowenstein TK, Timofeeff MN (2008) Secular variations in seawater chemistry as a control on the chemistry of basinal brines: test of the hypothesis. Geofluids 8:77–92. https://doi.org/10.1111/j.1468-8123.2007.00206.x

    Article  Google Scholar 

  • Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294:1086–1088. https://doi.org/10.1126/science.1064280

    Article  Google Scholar 

  • Lüders V, Möller P (1992) Fluid evolution and ore deposition in the Harz Mountains (germany). Eur J Mineral 4:1053–1068

    Article  Google Scholar 

  • Mangenot X, Bonifacie M, Gasparrini M, Götz A, Chaduteau C, Ader M, Rouchon V (2017) Coupling Δ47 and fluid inclusion thermometry on carbonate cements to precisely reconstruct the temperature, salinity and δ18O of paleo-groundwater in sedimentary basins. Chem Geol 472:44–57. https://doi.org/10.1016/j.chemgeo.2017.10.011

    Article  Google Scholar 

  • Matray J-M, Fontes J-C (1990) Origin of the oil-field brines in the Paris basin. Geology 18:501–504. https://doi.org/10.1130/0091-7613(1990)018%3c0501:OOTOFB%3e2.3.CO;2

    Article  Google Scholar 

  • Matray JM, Lambert M, Fontes JCh (1994) Stable isotope conservation and origin of saline waters from the middle jurassic aquifer of the Paris Basin, France. Appl Geochem 9:297–309. https://doi.org/10.1016/0883-2927(94)90040-X

    Article  Google Scholar 

  • Millot R, Guerrot C, Innocent C, Négrel Ph, Sanjuan B (2011) Chemical, multi-isotopic (Li–B–Sr–U–H–O) and thermal characterization of triassic formation waters from the Paris Basin. Chem Geol 283:226–241. https://doi.org/10.1016/j.chemgeo.2011.01.020

    Article  Google Scholar 

  • Muchez P, Heijlen W, Banks D, Blundell D, Boni M, Grandia F (2005) 7: extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol Rev 27:241–267. https://doi.org/10.1016/j.oregeorev.2005.07.013

    Article  Google Scholar 

  • Munoz M, Boyce AJ, Courjault-Rade P, Fallick AE, Tollon F (1999) Continental basinal origin of ore fluids from southwestern massif central fluorite veins (albigeois, France): evidence from fluid inclusion and stable isotope analyses. Appl Geochem 14:447–458. https://doi.org/10.1016/S0883-2927(98)00070-5

    Article  Google Scholar 

  • Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico - part twelve. a cationic geothermometer for prospecting of geothermal resources. Heat Recover Syst CHP 7:243–258. https://doi.org/10.1016/0890-4332(87)90138-4

    Article  Google Scholar 

  • Nigon P (1988) La fluorine stratiforme de la bordure ouest du Morvan : géologie, géochimie et modélisation. Université d’Orléans, 256

  • Parneix JC, Beaufort D, Dudoignon P, Meunier A (1985) Biotite chloritization process in hydrothermally altered granites. Chem Geol 51:89–101. https://doi.org/10.1016/0009-2541(85)90089-0

    Article  Google Scholar 

  • Pauwels H, Fouillac C, Fouillac A-M (1993) Chemistry and isotopes of deep geothermal saline fluids in the upper Rhine graben: origin of compounds and water-rock interactions. Geochimica et Cosmochimica Acta 57:2737–2749. https://doi.org/10.1016/0016-7037(93)90387-C

    Article  Google Scholar 

  • Pauwels H, Fouillac C, Goff F, Vuataz FD (1997) The isotopic and chemical composition of CO2-rich thermal waters in the mont-dore region (massif-central, France). Appl Geochem 12:411–427

    Article  Google Scholar 

  • Pierre C (1982) Teneurs en isotopes stables (δ18O, δ2H, δ13C, δ34S) et conditions de génèse des évaporites marines : application à quelques milieux actuels et au Messinien de la Méditerranée [Thèse de doctorat]: Université Paris-Sud

  • Piqué À, Canals À, Grandia F, Banks DA (2008) Mesozoic fluorite veins in NE Spain record regional base metal-rich brine circulation through basin and basement during extensional events. Chem Geol 257:139–152. https://doi.org/10.1016/j.chemgeo.2008.08.028

    Article  Google Scholar 

  • Rebeix R, Le Gal La Salle C, Michelot J-L, Verdoux P, Noret A, Monvoisin G, Gianesinni S, Lancelot J, Simler R (2011) Tracing the origin of water and solute transfers in deep groundwater from oxfordian, dogger and trias formations in the east of the Paris Basin – France. Phys Chem Earth, Parts A/B/C 36:1496–1510. https://doi.org/10.1016/j.pce.2011.07.015

    Article  Google Scholar 

  • Rebeix R et al (2014) Chlorine transport processes through a 2000 m aquifer/aquitard system. Marine Petroleum Geol 53:102–116. https://doi.org/10.1016/j.marpetgeo.2013.12.013

    Article  Google Scholar 

  • Richard A, Banks DA, Mercadier J, Boiron M-C, Cuney M, Cathelineau M (2011) An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (athabasca Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions. Geochimica et Cosmochimica Acta 75:2792–2810. https://doi.org/10.1016/j.gca.2011.02.026

    Article  Google Scholar 

  • Richard A, Cathelineau M, Boiron M-C, Mercadier J, Banks DA, Cuney M (2016) Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (athabasca Basin and basement, Canada). Mineralium Deposita 51:249–270. https://doi.org/10.1007/s00126-015-0601-4

    Article  Google Scholar 

  • Richardson CK, Holland HD (1979) The solubility of fluorite in hydrothermal solutions, an experimental study. Geochimica et Cosmochimica Acta 43:1313–1325. https://doi.org/10.1016/0016-7037(79)90121-2

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions: an introduction to studies of all types of fluid inclusions, gas, liquid, or melt, trapped in materials from earth and space, and their application to the understanding of geologic processes: Washington DC, Mineralogical Society of America ; Chelsea, Mich. : Printed by BookCrafters, Inc., Reviews in mineralogy 12: 644

  • Sánchez V, Vindel E, Martín-Crespo T, Corbella M, Cardellach E, Banks D (2009) Sources and composition of fluids associated with fluorite deposits of Asturias (N Spain). Geofluids 9:338–355. https://doi.org/10.1111/j.1468-8123.2009.00259.x

    Article  Google Scholar 

  • Sanjuan B, Millot R, Innocent Ch, Dezayes Ch, Scheiber J, Brach M (2016) Major geochemical characteristics of geothermal brines from the upper Rhine graben granitic basement with constraints on temperature and circulation. Chemical Geology 428:27–47. https://doi.org/10.1016/j.chemgeo.2016.02.021

    Article  Google Scholar 

  • Scheffer C, Tarantola A, Vanderhaeghe O, Voudouris P, Spry PG, Rigaudier T, Photiades A (2019) The lavrion pb-zn-Ag–rich vein and breccia detachment-related deposits (greece): involvement of evaporated seawater and meteoric fluids during postorogenic exhumation. Econ Geol 114:1415–1442. https://doi.org/10.5382/econgeo.4670

    Article  Google Scholar 

  • Scolari G (1966) Étude pétrographique de l’assise de base secondaire sur les bordures N et W du Morvan (Auxois, terrePlaine, Nivernais): Rapport BRGM 149

  • Sizaret S (2003) Genèse du Système Hydrothermal à Fluorine-Barytine-Fer de Chaillac, (Indre, France) [Thèse de doctorat]: Université d’Orléans, 271

  • Sizaret S, Marcoux E, Jebrak M, Touray JC (2004) The rossignol fluorite vein, chaillac, France: multiphase hydrothermal activity and intravein sedimentation. Econ Geol 99:1107–1122. https://doi.org/10.2113/gsecongeo.99.6.1107

    Article  Google Scholar 

  • Sizaret S, Marcoux E, Boyce A, Jebrak M, Stevenson R, Ellam R (2009) Isotopic (S, sr, Sm/Nd, D, pb) evidences for multiple sources in the early jurassic chaillac F-Ba ore deposit (indre, France). Bulletin de la Société Géologique de France 180:83–94. https://doi.org/10.2113/gssgfbull.180.2.83

    Article  Google Scholar 

  • Soulé de Lafont D, Lhégu J (1980) Les gisements stratiformes de fluorine du morvan (sud-Est du bassin de Paris, France), in Paris, France, v. Fascicules Sur Les Gisements Français 2:40

    Google Scholar 

  • Stampfli GM, Borel GD (2004) The TRANSMED Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA eds. The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle: Geological and Geophysical Framework of the Mediterranean and the Surrounding Areas, Berlin, Heidelberg, Springer Berlin Heidelberg 53–80.https://doi.org/10.1007/978-3-642-18919-7_3

  • Steele-MacInnis M, Bodnar RJ, Naden J (2011) Numerical model to determine the composition of H2O–NaCl–CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochimica et Cosmochimica Acta 75:21–40. https://doi.org/10.1016/j.gca.2010.10.002

    Article  Google Scholar 

  • Steele-MacInnis M, Ridley J, Lecumberri-Sanchez P, Schlegel TU, Heinrich CA (2016) Application of low-temperature microthermometric data for interpreting multicomponent fluid inclusion compositions. Earth-Sci Rev 159:14–35. https://doi.org/10.1016/j.earscirev.2016.04.011

    Article  Google Scholar 

  • Stober I, Bucher K (2004) Fluid sinks within the earth’s crust. Geofluids 4:143–151. https://doi.org/10.1111/j.1468-8115.2004.00078.x

    Article  Google Scholar 

  • Strydom J, Sterpenich J, Grgic D, Richard A, Eggenkamp HGM, Agrinier P, Louvat P, Mosser-Ruck R, Gaire P, Gaucher EC (2022) Experimental study of chemical evolution and isotope fractionation of Cl and Br in pore water expelled during strong clay compaction. Applied Geochemistry 140:105274. https://doi.org/10.1016/j.apgeochem.2022.105274

    Article  Google Scholar 

  • Thierry J, Barrier E (20000 Late Sinemurian, middle Toarcian, middle Callovian, early Kimmeridgian, early Tithonian.: CCGM/CGMW Atlas Peri-Tethys, Paleogeographical Maps - Explanatory Notes

  • Tonani, F.B., 1980, Some Remarks on the Application of Geochemical Techniques in geothermal exploration. In: Strub AS, Ungemach P eds, Advances in European Geothermal Research, Dordrecht, Springer Netherlands. 428–443 https://doi.org/10.1007/978-94-009-9059-3_38

  • Tremolieres P (1981) Mécanismes de la déformation en zones de plate-forme: méthode et application au bassin de Paris. Deuxième Partie: Revue De L’institut Français Du Pétrole 36:579–593

    Google Scholar 

  • Trinkler M, Monecke T, Thomas R (2005) Constraints on the genesis of yellow fluorite in hydrothermal barite-fluorite veins of the Erzgebirge, eastern Germany: evidence from optical absorption spectroscopy, rare earth element data, and fluid inclusion investigations. Can Mineral 43:883–898. https://doi.org/10.2113/gscanmin.43.3.883

    Article  Google Scholar 

  • Truesdell AH (1976) Geochemical techniques in exploration, summary of section III., in San Francisco, California, USA, proceedings : second United Nations symposium on the development and use of geothermal. Resources 1:53–79

    Google Scholar 

  • Uriarte JA (1997) Maturité thermique des sédiments de la bordure sud-est du Bassin de Paris [Thèse de doctorat]: Université de Genève, 158 https://doi.org/10.13097/archive-ouverte/unige:98446 (accessed February 2022).

  • Verma S, Santoyo E (1997) New improved equations for Na/L, Na/Li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geotherm Res 79:9–23

    Article  Google Scholar 

  • Vialette Y (1973) Age des granites du Massif Central. Bulletin de la Société Géologique de France S7-XV:260–270. https://doi.org/10.2113/gssgfbull.S7-XV.3-4.260

    Article  Google Scholar 

  • Vuataz FD, Fouillac A-M, Fouillac C, Michard G, Brach M (1987) Etude isotopique et suivi géochimique des eaux des sondages de Chassole et de quelques sources minérales du Cézallier (Massif Central, France). Géologie de la France 4:121–131

    Google Scholar 

  • Walter BF, Burisch M, Marks MAW, Markl G (2017) Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the schwarzwald district SW Germany. Mineralium Deposita 52:1191–1204. https://doi.org/10.1007/s00126-017-0719-7

    Article  Google Scholar 

  • Walter BF, Burisch M, Fusswinkel T, Marks MAW, Steele-MacInnis M, Wälle M, Apukhtina OB, Markl G (2018a) Multi-reservoir fluid mixing processes in rift-related hydrothermal veins Schwarzwald, SW-Germany. J Geochem Explor 186:158–186. https://doi.org/10.1016/j.gexplo.2017.12.004

    Article  Google Scholar 

  • Walter BF, Gerdes A, Kleinhanns IC, Dunkl I, von Eynatten H, Kreissl S, Markl G (2018b) The connection between hydrothermal fluids, mineralization, tectonics and magmatism in a continental rift setting: Fluorite Sm-Nd and hematite and carbonates U-Pb geochronology from the Rhinegraben in SW Germany. Geochimica et Cosmochimica Acta 240:158–186. https://doi.org/10.1016/j.gca.2018.08.012

    Article  Google Scholar 

  • Willner AP, Massonne H-J, Krohe A (1991) Tectono-thermal evolution of a part of a Variscan magmatic arc: The Odenwald in the Mid-German Crystalline Rise. Geologische Rundschau 80:369–389. https://doi.org/10.1007/BF01829372

    Article  Google Scholar 

  • Yanatieva OK (1946) Polythermal solubilities in the systems CaCl2-MgCl2-H2O and CaCl2-NaCl-H2O. Zhurnal Prikladnoi Khimii 19:709–722

    Google Scholar 

  • Ziegler PA, Dèzes P (2006) Crustal evolution of Western and Central Europe: geological society. London, Memoirs 32:43–56. https://doi.org/10.1144/GSL.MEM.2006.032.01.03

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge S. Fernando for providing crush-leach solutions of fluorite and R. Millot, S. Andrieu and T. Conte from BRGM (Bureau des Recherches Géologiques et Minières) for technical advice on ICP-MS analyses. This work was supported by the Paris Ile-de-France Region – DIM “Matériaux anciens et patrimoniaux.” We would like to thank Mathias Burisch and an anonymous reviewer for the constructive comments on our manuscript, as well as associate editor David Banks and editor Georges Beaudoin.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Antonin Richard, Diana Chourio-Camacho, and Gaël Monvoisin were involved in the crush-leach analysis. Pierre Agrinier and Gérard Bardoux supervised the quantification of stable chlorine isotopes. Thomas Rigaudier supervised the measurements of fluid inclusions oxygen and hydrogen stable isotope composition. Antonin Richard, Alexandre Tarantola, Jocelyn Barbarand, and Benjamin Brigaud were involved in data interpretation and the improvement of the paper. The first draft of the manuscript was written by Louise Lenoir and Thomas Blaise, and all authors read, commented on previous versions of the manuscript, and approved the final version.

Corresponding author

Correspondence to Louise Lenoir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: D. Banks

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 149 KB)

Supplementary file2 (PDF 350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenoir, L., Blaise, T., Chourio-Camacho, D. et al. The origin of fluorite-barite mineralization at the interface between the Paris Basin and its Variscan basement: insights from fluid inclusion chemistry and isotopic (O, H, Cl) composition. Miner Deposita 59, 397–417 (2024). https://doi.org/10.1007/s00126-023-01219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01219-2

Keywords

Navigation