Skip to main content
Log in

Spark Plasma Sintering of Ceramic Materials Based on Rare-Earth Zirconates

  • Published:
Refractories and Industrial Ceramics Aims and scope

Powders of rare-earth (RE) zirconates La2Zr2O7 and ZrO2 – 8Y2O3 were synthesized by reverse chemical precipitation to obtain ceramic materials based on them by spark-plasma sintering. Formation of the ceramic phase composition during consolidation by spark-plasma sintering was studied. The thermal conductivity of ceramics based on RE zirconates at 400°C was 1.79 W/(m·K), which was less than those of La2Zr2O7 [2.06 W/(m·K)] and ZrO2 – 8Y2O3 [2.4 W/(m·K)]. Use of RE oxide concentrate was shown to be promising for obtaining a ceramic layer of thermal barrier coatings with thermal stability at temperatures above 1200°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. E. N. Kablov and S. A. Muboyadzhyan, “Heat-resistant coatings for the high-pressure turbine blades of promising GTEs,” Metally, No. 1, 5 – 13 (2012).

    Google Scholar 

  2. D. R. Clarke, M. Oechsner, and N. P. Padtur, “Thermal-barrier coatings for more efficient gas-turbine engines, MRS Bull., 37(10), 891 – 898 (2012); https://doi.org/10.1557/mrs.2012.232.

    Article  CAS  Google Scholar 

  3. V. P. Pankov, A. L. Babayan, M. V. Kulikov, et al., “Heat-resistant coatings for aviation gas-turbine engine blades,” Polzunov. Vestn., No. 1, 161 – 172 (2021); https://ojs.altstu.ru/index.php/PolzVest/article/view/31.

  4. D. S. Kashin and P. A. Stekhov, “Modern thermal barrier coatings obtained by electron-beam physical vapor deposition (review),” Tr. Vses. Nauchno-Issled. Inst. Aviats. Mater. (VIAM), No. 2 (62), 84 – 90 (2018); http://www.viam-works.ru.

  5. D. A. Chubarov, S. A. Budinovskii, and A. A. Smirnov, “Magnetron sputtering deposition of ceramic layers of thermal barrier coatings,” Aviats. Mater. Tekhnol., No. 4 (45), 23 – 30 (2016); https://doi.org/10.18577/2071-9140-2016-0-4-23-30.

  6. S. Sampath, U. Schulz, M. O. Jarligo, and S. Kuroda, “Processing science of advanced thermal-barrier systems,” MRS Bull., 37, No. 10, 903 – 910 (2012); https://doi.org/10.1557/mrs.2012.233.

    Article  CAS  Google Scholar 

  7. D. V. Min’ko, K. E. Belyavin, and V. K. Sheleg, Theory and Practice of Obtaining Functional-Gradient Materials by Pulsed Electrophysical Methods [in Russian], BNTU, Minsk, 2020, 450 pp.

  8. A. H. Pakseresht, A. H. Javadi, M. Bahrami, et al., “Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior,” Ceram. Int., 42(2), 2770 – 2779 (2016); https://doi.org/10.1016/j.ceramint.2015.11.008.

    Article  CAS  Google Scholar 

  9. M. Boidot, S. Selezneff, D. Monceau, et al., “Proto-TGO formation in TBC systems fabricated by spark plasma sintering,” Surf. Coat. Technol., 205(5), 1245 – 1249 (2010); https://doi.org/10.1016/j.surfcoat.2010.09.042.

    Article  CAS  Google Scholar 

  10. R. Vassen, M. O. Jarligo, T. Steinke, et al., “Overview on advanced thermal barrier coatings,” Surf. Coat. Technol., 205(4), 938 – 942 (2010); https://doi.org/10.1016/j.surfcoat.2010.08.151.

    Article  CAS  Google Scholar 

  11. V. Kumar and B. Kandasubramanian, “Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications,” Particuology, 27, 1 – 28 (2016); https://doi.org/10.1016/j.partic.2016.01.007.

    Article  CAS  Google Scholar 

  12. J. Zhang, X. Guo, Y.-G. Jung, et al., “Lanthanum zirconate based thermal barrier coatings: A review,” Surf. Coat. Technol., 323, 18 – 29 (2017); https://doi.org/10.1016/j.surfcoat.2016.10.019.

    Article  CAS  Google Scholar 

  13. W. Pan, S. R. Phillpot, C. Wan, et al., “Low thermal conductivity oxides,” MRS Bull., 37(10), 917 – 922 (2012); https://doi.org/10.1557/mrs.2012.234.

    Article  CAS  Google Scholar 

  14. X. Cao, “Application of rare earths in thermal barrier coating materials,” J. Mater. Sci. Technol., 23(1), 15 – 35 (2007).

    CAS  Google Scholar 

  15. I. V. Mazilin, L. K. Baldaev, D. V. Drobot, et al., “Composition and structure of coatings based on rare-earth zirconates,” Inorg. Mater., 52(8), 939 – 944 (2016); https://doi.org/10.1134/S0020168516090119.

    Article  CAS  Google Scholar 

  16. N. P. Bansal and D. Zhu, “Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings,” Mater. Sci. Eng., A, 459(1/2), 192 – 195 (2007); https://doi.org/10.1016/j.msea.2007.01.069.

  17. H. Zhou and D. Yi, “Effect of rare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings,” J. Rare Earths, 26(6), 770 – 774 (2008); https://doi.org/10.1016/S1002-0721(09)60002-8.

    Article  Google Scholar 

  18. R. M. J. Zhang and M. J. Reece, “Review of high entropy ceramics: Design, synthesis, structure and properties,” J. Mater. Chem. A, 7(39), 22148 – 22162 (2019); https://doi.org/10.1039/c9ta05698j.

    Article  CAS  Google Scholar 

  19. Z. Zhao, H. Xiang, F.-Z. Dai, et al., “(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate,” J. Mater. Sci. Technol., 35, 2647 – 2651 (2019); https://doi.org/10.1016/j.jmst.2019.05.054.

    Article  CAS  Google Scholar 

  20. F. Li, L. Zhou, J.-X. Liu, et al., “High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials,” J. Adv. Ceram., 8, 576 – 582 (2019); https://doi.org/10.1007/s40145-019-0342-4.

    Article  CAS  Google Scholar 

  21. L. Zhou, F. Li, J.-X. Liu, et al., “High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying,” J. Eur. Ceram. Soc., 40, 5731 – 5739 (2020); https://doi.org/10.1016/j.jeurceramsoc.2020.07.061.

    Article  CAS  Google Scholar 

  22. T.-Z. Tu, J.-X. Liu, L. Zhou, et al., “Graceful behavior during CMAS corrosion of a high-entropy rare-earth zirconate for thermal barrier coating material,” J. Eur. Ceram. Soc., 42, 649 – 657 (2022); https://doi.org/10.1016/j.jeurceramsoc.2021.10.022.

    Article  CAS  Google Scholar 

  23. E. R. Andrievskaya, “Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides,” J. Eur. Ceram. Soc., 28(12), 2363 – 2388 (2008); https://doi.org/10.1016/j.jeurceramsoc.2008.01.009.

    Article  CAS  Google Scholar 

  24. S. A. Oglezneva, A. A. Smetkin, and M. N. Kachenyuk, “Forming of gradient material on Inconel 625 with an external ceramic layer for thermal barrier coatings during spark plasma sintering,” Konstr. Kompoz. Mater., No. 4 (160), 28 – 31 (2020).

  25. S. Wang, W. Li, S. Wang, and Z. Chen, “Synthesis of nanostructured La2Zr2O7 by a non-alkoxide sol-gel method: From gel to crystalline powders,” J. Eur. Ceram. Soc., 35, 105 – 112 (2015); https://doi.org/10.1016/j.jeurceramsoc.2014.08.032.

    Article  CAS  Google Scholar 

  26. Ch. Kaliyaperumal, A. Sankarakumar, J. Palanisamy, and T. Paramasivam, “Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7,” Mater. Lett., 228, 493 – 496 (2018); https://doi.org/10.1016/j.matlet.2018.06.087.

    Article  CAS  Google Scholar 

  27. B. Paul, K. Singh, T. Jaron, et al., “Structural properties and the fluorite-pyrochlore phase transition in La2Zr2O7: The role of oxygen to induce local disordered states,” J. Alloys Compd., 686, 130 – 136 (2016); https://doi.org/10.1016/j.jallcom.2016.05.347.

    Article  CAS  Google Scholar 

  28. X. Tang and X. Zheng, “Raman scattering and t-phase lattice vibration of 3% (mole fraction) Y2O3-ZrO2,” J. Mater. Sci. Technol., 20(5), 485 – 489 (2004).

    CAS  Google Scholar 

  29. Y. Hemberger, N. Wichtner, Ch. Berthold, and K. G. Nickel, “Quantification of yttria in stabilized zirconia by Raman spectroscopy,” Int. J. Appl. Ceram. Technol., 13, 116 – 124 (2016); https://doi.org/10.1111/ijac.12434.

    Article  CAS  Google Scholar 

  30. Y. Wang, R. Kumar, J. Rollerand, and R. Maric, “Synthesis and characterization of nano-crystalline La2Zr2O7 film by reactive spray deposition technology for application in thermal barrier coatings,” MRS Adv., 2(28), 1519 – 1525 (2017); https://doi.org/10.1557/adv.2017.154.

    Article  CAS  Google Scholar 

  31. X. Guo, Z. Lu, H.-Y. Park, et al., “Thermal properties of La2Zr2O7 double-layer thermal barrier coatings,” Adv. Appl. Ceram., 118(3), 91 – 97 (2019); https://doi.org/10.1080/17436753.2018.1510820.

    Article  CAS  Google Scholar 

  32. D. Song, U. Paik, X. Guo, et al., “Microstructure design for blended feedstock and its thermal durability in lanthanum zirconate based thermal barrier coatings,” Surf. Coat. Technol., 308, 40 – 49 (2016); https://doi.org/10.1016/j.surfcoat.2016.07.112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Kul’met’eva.

Additional information

Translated from Novye Ogneupory, No. 12, pp. 35 – 40, December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oglezneva, S.A., Porozova, S.E., Kachenyuk, M.N. et al. Spark Plasma Sintering of Ceramic Materials Based on Rare-Earth Zirconates. Refract Ind Ceram 63, 659–664 (2023). https://doi.org/10.1007/s11148-023-00787-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-023-00787-0

Keywords

Navigation