Skip to main content
Log in

Practical ANN Model for Estimating Buckling Load Capacity of Corroded Web-Tapered Steel I-Section Columns

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

This study develops an artificial neural network (ANN) to estimate the critical buckling load (CBL) of corroded web-tapered steel I-section (WTSI) columns in pre-engineered steel buildings. A total of 387 datasets are employed to develop the ANN model. The datasets are generated from the proposed analytical model and Newton–Raphson method. The input parameters of the developed ANN model contain the cross-sectional dimensions of the steel column (i.e., the top and bottom flange width, top and bottom flange thickness, maximum section height, minimum section height, and web thickness), elastic modulus of material, and the column height. Meanwhile, the CBL is the output parameter of the ANN model. A predictive process for the CBL of the corroded WTSI columns has been proposed based on the ANN model and previous corrosion model. Results reveal that the ANN model showed an excellent performance in predicting the CBL of the corroded steel columns. The \({R}^{2}\) values of the training, testing, and validation data are 0.99975, 0.99916, and 0.99951, respectively. The root-mean-squared errors of the training, testing, and validation data are 96.705 \(\left(\mathrm{kN}\right)\), 103.402 \(\left(\mathrm{kN}\right)\), and 103.200 \(\left(\mathrm{kN}\right)\), respectively. Additionally, the a20-index is very close to 1.0. Moreover, a graphical user interface tool is constructed to facilitate the CBL calculation of the corroded WTSI columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Andalib, Z., Caputo, P., Dorafshan, S., Maguire, M., & Collins, W. Investigation into the behavior of an open web steel joist bridge. In Proceedings of the 2018 International Bridge Conference, National Harbor, MD, USA, 2018a

  • Andalib, Z., Kafi, M. A., Kheyroddin, A., & Bazzaz, M. (2014). Experimental investigation of the ductility and performance of steel rings constructed from plates. Journal of Constructional Steel Research, 103, 77–88.

    Article  Google Scholar 

  • Andalib, Z., Kafi, M. A., Kheyroddin, A., Bazzaz, M., & Momenzadeh, S. (2018b). Numerical evaluation of ductility and energy absorption of steel rings constructed from plates. Engineering Structures, 169, 94–106.

    Article  Google Scholar 

  • Bazzaz, M., Andalib, Z., Kafi, M. A., & Kheyroddin, A. (2015a). Evaluating the performance of OBS-CO in steel frames under monotonic load. Journal of Earthquakes and Structures, 8(3), 697–710.

    Google Scholar 

  • Bazzaz, M., Andalib, Z., Kheyroddin, A., & Kafi, M. A. (2015b). Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system. Journal of Steel and Composite Structures, 19(4), 917–937.

    Article  Google Scholar 

  • Bazzaz, M., Kafi, M. A., Kheyroddin, A., Andalib, Z., & Esmaeili, H. (2014). Evaluating the seismic performance of off-centre bracing system with circular element in optimum place. International Journal of Steel Structures, 14(2), 293–304.

    Article  Google Scholar 

  • Bazzaz, M., Kheyroddin, A., Kafi, M. A., & Andalib, Z. (2012). Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames. Steel & Composite Structures, 12(5), 445–464.

    Article  Google Scholar 

  • CEN, E. (2005). 1-1-Eurocode 3: Design of steel structures-Part 1–1: General rules and rules for buildings. European Committee for Standardization.

    Google Scholar 

  • Chico, B., De la Fuente, D., Díaz, I., Simancas, J., & Morcillo, M. (2017). Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG. ICP/UNECE and MICAT databases. Materials, 10(6), 601.

    Google Scholar 

  • Eurocode, E. (1996). 3: Design of steel structures–Part 1.4: General rules–Supplementary rules for stainless steels. European Committee for Standardization. ENV 1993–1–4, CEN, Brussels.

  • Flah, M., Nunez, I., Ben Chaabene, W., & Nehdi, M. L. (2021). Machine learning algorithms in civil structural health monitoring: A systematic review. Archives of Computational Methods in Engineering, 28, 2621–2643.

    Article  Google Scholar 

  • Gardner, L., & Nethercot, D. A. (2005). Designers' Guide to EN 1993–1–1 Eurocode 3: Design of Steel Structures: General Rules and Rules for Buildings: Thomas Telford Publishing.

  • Golafshani, E. M., & Ashour, A. (2016). A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups. Advances in Engineering Software, 97, 29–39.

    Article  Google Scholar 

  • Ha, N. T. (2019). Reliability assessment of frame steel considering semi-rigid connections. Journal of Materials and Engineering Structures, 6(1), 119–126.

    MathSciNet  Google Scholar 

  • Ilter, E., Celik, O. C., & Unlu, A. (2020). Multi-criteria performance evaluation of a glass panel system using full-scale experimental data. Architectural Science Review, 63(6), 507–525.

    Article  Google Scholar 

  • Knotkova, D., Boschek, P., & Kreislova, K. (1995). Results of ISO CORRAG program: processing of one-year data in respect to corrosivity classification. In Atmospheric Corrosion: ASTM International.

  • Knotkova, D., Kucera, V., Dean, S. W., & Boschek, P. (2002). Classification of the corrosivity of the atmosphere—standardized classification system and approach for adjustment. In Outdoor atmospheric corrosion: ASTM International.

  • Knotkova, D., Dean, S. W., & Kreislova, K. (2010). ISOCORRAG, International Atmospheric Exposure Program: Summary of Results: Developed by ISO/TC 156/WG 4, Atmospheric Corrosion Testing and Classification of Corrosivity of Atmosphere: ASTM International.

  • Komp, M. (1987). Atmospheric corrosion ratings of weethering steels-calculation and significance. Materials Performance, 26(7), 42–44.

    Google Scholar 

  • Kucera, V., Tidblad, J., Kreislova, K., Knotkova, D., Faller, M., Reiss, D., et al. (2007). UN/ECE ICP materials dose-response functions for the multi-pollutant situation. In Acid Rain-Deposition to Recovery (pp. 249–258): Springer.

  • Landolfo, R., Cascini, L., & Portioli, F. (2010). Modeling of metal structure corrosion damage: A state of the art report. Sustainability, 2(7), 2163–2175.

    Article  Google Scholar 

  • Li, X.-X. Design of tapered beam-columns. In Proceedings of the 2008 Annual Stability Conference, Tennessee, USA., 2008

  • Marques, L., Da Silva, L. S., & Rebelo, C. (2014a). Rayleigh Ritz procedure for the determination of the critical load of tapered columns. Steel and Composite Structures, 16(1), 45–58.

    Article  Google Scholar 

  • Marques, L., da Silva, L. S., Rebelo, C., & Santiago, A. (2014b). Extension of EC3-1-1 interaction formulae for the stability verification of tapered beam-columns. Journal of Constructional Steel Research, 100, 122–135.

    Article  Google Scholar 

  • Marques, L., Taras, A., da Silva, L. S., Greiner, R., & Rebelo, C. (2012). Development of a consistent buckling design procedure for tapered columns. Journal of Constructional Steel Research, 72, 61–74.

    Article  Google Scholar 

  • Mathworks, I. (2018). MATLAB and statistics toolbox release 2018b. Natick (Massachusetts, United States).

  • Mikhailov, A., Tidblad, J., & Kucera, V. (2004). The classification system of ISO 9223 standard and the dose–response functions assessing the corrosivity of outdoor atmospheres. Protection of Metals, 40(6), 541–550.

    Article  Google Scholar 

  • Morcillo, M. (1995). Atmospheric corrosion in Ibero-America: the MICAT project. In Atmospheric corrosion: ASTM International.

    Google Scholar 

  • Morcillo, M., Chico, B., Díaz, I., Cano, H., & De la Fuente, D. (2013). Atmospheric corrosion data of weathering steels. A Review. Corrosion Science, 77, 6–24.

    Article  Google Scholar 

  • Naser, M. (2023). Machine learning for all! Benchmarking automated, explainable, and coding-free platforms on civil and environmental engineering problems. Journal of Infrastructure Intelligence and Resilience, 2(1), 100028.

    Article  Google Scholar 

  • Ngoc-Long, T., & Ha, T. (2020). The effect of metal corrosion on the structural reliability of the Pre-Engineered steel frame. Journal of Materials and Engineering Structures, 7(2), 155–165.

    Google Scholar 

  • Nguyen, D.-D., Tran, V.-L., Ha, D.-H., Nguyen, V.-Q., & Lee, T.-H. (2021). A machine learning-based formulation for predicting shear capacity of squat flanged RC walls. In Structures. https://doi.org/10.1016/j.istruc.2020.12.054

    Article  Google Scholar 

  • Nguyen, Q.-V. (2007). Buckling of web-tapered I-section columns in steel frames. Construction Publishing House.

    Google Scholar 

  • Nguyen, T.-H., Tran, N.-L., & Nguyen, D.-D. (2021). Prediction of axial compression capacity of cold-formed steel oval hollow section columns using ANN and ANFIS models. International Journal of Steel Structures. https://doi.org/10.1007/s13296-021-00557-z

    Article  Google Scholar 

  • Nguyen, T.-H., Tran, N.-L., & Nguyen, D.-D. (2021). Prediction of critical buckling load of web tapered i-section steel columns using artificial neural networks. International Journal of Steel Structures, 24, 1–23.

    Google Scholar 

  • Nikbin, I. M., Rahimi, S., & Allahyari, H. (2017). A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network. Engineering Fracture Mechanics, 186, 466–482. https://doi.org/10.1016/j.engfracmech.2017.11.010

    Article  Google Scholar 

  • Panchenko, Y. M., & Marshakov, A. I. (2017). Prediction of first-year corrosion losses of carbon steel and zinc in continental regions. Materials, 10(4), 422.

    Article  Google Scholar 

  • Patel, V. M., & Mehta, H. B. (2018). Thermal performance prediction models for a pulsating heat pipe using Artificial Neural Network (ANN) and Regression/Correlation Analysis (RCA). Sādhanā, 43(11), 1–16. https://doi.org/10.1007/s12046-018-0954-3

    Article  MathSciNet  Google Scholar 

  • Patil, S. B., & Subbareddy, N. (2002). Neural network based system for script identification in Indian documents. Sādhanā, 27(1), 83–97. https://doi.org/10.1007/BF02703314

    Article  Google Scholar 

  • Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer-Aided Civil and Infrastructure Engineering, 12(4), 295–310.

    Article  Google Scholar 

  • Roberge, P., Klassen, R., & Haberecht, P. (2002). Atmospheric corrosivity modeling—A review. Materials & Design, 23(3), 321–330.

    Article  Google Scholar 

  • Secer, M., & Uzun, E. T. (2017). Corrosion damage analysis of steel frames considering lateral torsional buckling. Procedia Engineering, 171, 1234–1241.

    Article  Google Scholar 

  • Simões da Silva, L., Simões, R., & Gervásio, H. (2010). Design of Steel structures. ECCS Press and Ernst & Sohn.

    Google Scholar 

  • Standard, B. (2002). Eurocode—Basis of structural design. EN 1990.

  • Thai, H.-T. Machine learning for structural engineering: A state-of-the-art review. In Structures, 2022 (Vol. 38, pp. 448–491): Elsevier

  • Tidblad, J., Kucera, V., Mikhailov, A. A., Henriksen, J., Kreislova, K., Yates, T., et al. (2001). UN ECE ICP materials: Dose-response functions on dry and wet acid deposition effects after 8 years of exposure. In Acid rain 2000 (pp. 1457–1462): Springer.

  • Tidblad, J. (2012). Atmospheric corrosion of metals in 2010–2039 and 2070–2099. Atmospheric Environment, 55, 1–6.

    Article  Google Scholar 

  • Tran, N.-L., & Nguyen, T.-H. Effect of Metal Corrosion on the Structural Reliability of the 3D Steel Frames. In Proceedings of the 3rd International Conference on Sustainability in Civil Engineering, 2021 (pp. 39–44): Springer doi:https://doi.org/10.1007/978-981-16-0053-1_5.

  • Tran, N.-L., Nguyen, D.-D., & Nguyen, T.-H. (2022). Prediction of speed limit of cars moving on corroded steel girder bridges using artificial neural networks. Sādhanā, 47(3), 1–14.

    Article  Google Scholar 

  • Tran, V.-L., & Kim, S.-E. (2020). Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns. Thin-Walled Structures, 152, 106744. https://doi.org/10.1016/j.tws.2020.106744

    Article  Google Scholar 

  • Tran, V.-L., Thai, D.-K., & Kim, S.-E. (2019). Application of ANN in predicting ACC of SCFST column. Composite Structures, 228, 111332. https://doi.org/10.1016/j.compstruct.2019.111332

    Article  Google Scholar 

  • Vadyala, S. R., Betgeri, S. N., Matthews, J. C., & Matthews, E. (2022). A review of physics-based machine learning in civil engineering. Results in Engineering, 13, 100316.

    Article  Google Scholar 

  • Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13–22. https://doi.org/10.1016/j.neucom.2017.09.099

    Article  Google Scholar 

  • Zorlu, K., Gokceoglu, C., Ocakoglu, F., Nefeslioglu, H., & Acikalin, S. (2008). Prediction of uniaxial compressive strength of sandstones using petrography-based models. Engineering Geology, 96(3–4), 141–158. https://doi.org/10.1016/j.enggeo.2007.10.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy-Duan Nguyen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TH., Phan, VT. & Nguyen, DD. Practical ANN Model for Estimating Buckling Load Capacity of Corroded Web-Tapered Steel I-Section Columns. Int J Steel Struct 23, 1459–1475 (2023). https://doi.org/10.1007/s13296-023-00781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-023-00781-9

Keywords

Navigation