Skip to main content
Log in

Locally Anisotropic Nonstationary Covariance Functions on the Sphere

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

Rapid developments in satellite remote-sensing technology have enabled the collection of geospatial data on a global scale, hence increasing the need for covariance functions that can capture spatial dependence on spherical domains. We propose a general method of constructing nonstationary, locally anisotropic covariance functions on the sphere based on covariance functions in \(\mathbb {R}^3\). We also provide theorems that specify the conditions under which the resulting correlation function is isotropic or axially symmetric. For large datasets on the sphere commonly seen in modern applications, the Vecchia approximation is used to achieve higher scalability on statistical inference. The importance of flexible covariance structures is demonstrated numerically using simulated data and a precipitation dataset. Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alegría A, Cuevas-Pacheco F, Diggle P, Porcu E (2021) The f-family of covariance functions: a matérn analogue for modeling random fields on spheres. Spat Stat 43:100512

    Article  Google Scholar 

  • Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc Ser B 70(4):825–848

    Article  MathSciNet  Google Scholar 

  • Bissiri PG, Peron AP, Porcu E (2020) Strict positive definiteness under axial symmetry on the sphere. Stoch Environ Res Risk Assess 34:723–732

    Article  Google Scholar 

  • Blake LR, Porcu E, Hammerling DM (2022) Parametric nonstationary covariance functions on spheres. Statistics 11(1):e468

    Article  MathSciNet  Google Scholar 

  • Castruccio S, Genton MG (2014) Beyond axial symmetry: an improved class of models for global data. Statistics 3(1):48–55

    Article  MathSciNet  Google Scholar 

  • Castruccio S, Genton MG (2016) Compressing an ensemble with statistical models: an algorithm for global 3d spatio-temporal temperature. Technometrics 58(3):319–328

    Article  MathSciNet  Google Scholar 

  • Castruccio S, Stein ML et al (2013) Global space-time models for climate ensembles. Ann Appl Stat 7(3):1593–1611

    Article  MathSciNet  Google Scholar 

  • Du J, Ma C, Li Y (2013) Isotropic variogram matrix functions on spheres. Math Geosci 45(3):341–357

    Article  MathSciNet  Google Scholar 

  • Emery X, Porcu E, Bissiri PG (2019) A semiparametric class of axially symmetric random fields on the sphere. Stoch Environ Res Risk Assess 33:1863–1874

    Article  Google Scholar 

  • Emery X, Arroyo D, Mery N (2021) Twenty-two families of multivariate covariance kernels on spheres, with their spectral representations and sufficient validity conditions. Stoch Environ Res Risk Assess 66:1–21

    Google Scholar 

  • Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4):1327–1349

    Article  MathSciNet  Google Scholar 

  • Guinness J (2018) Permutation and grouping methods for sharpening Gaussian process approximations. Technometrics 60(4):415–429

    Article  MathSciNet  Google Scholar 

  • Guinness J, Fuentes M (2016) Isotropic covariance functions on spheres: some properties and modeling considerations. J Multivar Anal 143:143–152

    Article  MathSciNet  Google Scholar 

  • Heaton M, Katzfuss M, Berrett C, Nychka D (2014) Constructing valid spatial processes on the sphere using kernel convolutions. Environmetrics 25(1):2–15

    Article  MathSciNet  Google Scholar 

  • Huang C, Zhang H, Robeson SM (2011) On the validity of commonly used covariance and variogram functions on the sphere. Math Geosci 43(6):721–733

    Article  MathSciNet  Google Scholar 

  • Jeong J, Jun M (2015a) A class of matérn-like covariance functions for smooth processes on a sphere. Spat Stat 11:1–18

  • Jeong J, Jun M (2015b) Covariance models on the surface of a sphere: When does it matter? Statistics 4(1):167–182

  • Jeong J, Jun M, Genton MG (2017) Spherical process models for global spatial statistics. Stat Sci 32(4):501

    Article  MathSciNet  Google Scholar 

  • Jones R (1963) Stochastic processes on a sphere. Ann Math Stat 34(1):213–218

    Article  MathSciNet  Google Scholar 

  • Jun M (2014) Matérn-based nonstationary cross-covariance models for global processes. J Multivar Anal 128:134–146

    Article  Google Scholar 

  • Jun M, Stein ML (2007) An approach to producing space-time covariance functions on spheres. Technometrics 49(4):468–479

    Article  MathSciNet  Google Scholar 

  • Jun M, Stein ML (2008) Nonstationary covariance models for global data. Ann Appl Stat 2(4):1271–1289

    Article  MathSciNet  Google Scholar 

  • Kang M, Katzfuss M (2021) Correlation-based sparse inverse Cholesky factorization for fast Gaussian-process inference. arXiv:2112.14591

  • Katzfuss M (2011) Hierarchical spatial and spatio-temporal modeling of massive datasets, with application to global mapping of CO\(_2\). PhD thesis, The Ohio State University

  • Katzfuss M, Guinness J (2021) A general framework for Vecchia approximations of Gaussian processes. Stat Sci 36(1):124–141

    Article  MathSciNet  Google Scholar 

  • Katzfuss M, Guinness J, Gong W, Zilber D (2020a) Vecchia approximations of Gaussian-process predictions. J Agric Biol Environ Stat 25(3):383–414

  • Katzfuss M, Jurek M, Zilber D, Gong W, Guinness J, Zhang J, Schäfer F (2020b) GPvecchia: fast Gaussian-process inference using Vecchia approximations. R package version 0.1.3

  • Katzfuss M, Guinness J, Lawrence E (2022) Scaled Vecchia approximation for fast computer-model emulation. SIAM/ASA J Uncertain Quantif 10(2):537–554

    Article  MathSciNet  Google Scholar 

  • Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque JF, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96(8):1333–1349

  • Knapp A (2012) Global Bayesian nonstationary spatial modeling for very large datasets. Bachelor Thesis

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between gaussian fields and gaussian Markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B Stat Methodol 73(4):423–498

    Article  MathSciNet  Google Scholar 

  • Ma C (2012) Stationary and isotropic vector random fields on spheres. Math Geosci 44(6):765–778

    Article  MathSciNet  Google Scholar 

  • Ma C (2015) Isotropic covariance matrix functions on all spheres. Math Geosci 47(6):699–717

    Article  MathSciNet  Google Scholar 

  • Menegatto V (2020) Positive definite functions on products of metric spaces via generalized stieltjes functions. Proc Am Math Soc 148(11):4781–4795

    Article  MathSciNet  Google Scholar 

  • Paciorek C, Schervish M (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17(5):483–506

    Article  MathSciNet  Google Scholar 

  • Schäfer F, Katzfuss M, Owhadi H (2021) Sparse Cholesky factorization by Kullback–Leibler minimization. SIAM J Sci Comput 43(3):A2019–A2046

    Article  MathSciNet  Google Scholar 

  • Stein ML (2005) Nonstationary spatial covariance functions. Technical Report No. 21, University of Chicago

  • Stein ML et al (2007) Spatial variation of total column ozone on a global scale. Ann Appl Stat 1(1):191–210

    Article  MathSciNet  Google Scholar 

  • Vecchia A (1988) Estimation and model identification for continuous spatial processes. J R Stat Soc Ser B 50(2):297–312

    Article  MathSciNet  Google Scholar 

  • Vihola M (2012) Robust adaptive metropolis algorithm with coerced acceptance rate. Stat Comput 22(5):997–1008

    Article  MathSciNet  Google Scholar 

  • Yaglom A (1987) Correlation theory of stationary and related random functions, vol 1. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Katzfuss.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 20 KB)

A Proofs

A Proofs

Proof of Theorem 1

If \(\gamma _1 ({\textbf{s}})=\gamma _2 ({\textbf{s}}) \equiv \gamma \) is constant, then

$$\begin{aligned} \mathbf{D(\gamma )}&=\left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \gamma &{} 0 \\ 0 &{} 0 &{} \gamma \end{array} \right) ,\\ {\tilde{\mathbf{\Sigma }}(s)}&= \mathcal {R}_x (\kappa (s)) \mathbf{D(\gamma (s))} \mathcal {R}_x (\kappa (s))'\\&= \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \cos \kappa (s) &{} -\sin \kappa (s) \\ 0 &{} \sin \kappa (s) &{} \cos \kappa (s) \end{array} \right) \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \gamma &{} 0 \\ 0 &{} 0 &{} \gamma \end{array} \right) \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \cos \kappa (s) &{} \sin \kappa (s) \\ 0 &{} -\sin \kappa (s) &{} \cos \kappa (s) \end{array} \right) \\&= \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \gamma &{} 0 \\ 0 &{} 0 &{} \gamma \end{array} \right) . \end{aligned}$$

To compute \(\mathbf{\Sigma (s)}=\mathcal {R}_z (l) \mathcal {R}_y (L) {\tilde{\mathbf{\Sigma }}(s)} \mathcal {R}_y (L)' \mathcal {R}_z (l)'\), we first compute

$$\begin{aligned} \textbf{A}:=\mathcal {R}_z (l) \mathcal {R}_y (L)&= \left( \begin{array}{ccc} \cos (l) &{} -\sin (l) &{} 0 \\ \sin (l) &{} \cos (l) &{} 0 \\ 0 &{} 0 &{} 1 \end{array} \right) \left( \begin{array}{ccc} \cos (L) &{} 0 &{} \sin (L) \\ 0 &{} 1 &{} 0 \\ -\sin (L) &{} 0 &{} \cos (L) \end{array} \right) \\&= \left( \begin{array}{ccc} \cos (l) \cos (L) &{} -\sin (l) &{} \cos (l) \sin (L) \\ \sin (l) \cos (L) &{} \cos (l) &{} \sin (l) \sin (L) \\ -\sin (L) &{} 0 &{} \cos (L) \end{array} \right) ,\\ \mathbf{\Sigma (s)}=\textbf{A} \tilde{\varvec{\Sigma }}(\textbf{s}) \mathbf{A'}&= \left( \begin{array}{ccc} (1-\gamma )x^2+\gamma &{} (1-\gamma )xy &{} (1-\gamma )xz \\ (1-\gamma )xy &{} (1-\gamma )y^2+\gamma &{} (1-\gamma )yz \\ (1-\gamma )xz &{} (1-\gamma )yz &{} (1-\gamma )z^2+\gamma \end{array} \right) \\&= (1-\gamma )\left( \begin{array}{c} x \\ y \\ z \end{array} \right) \left( \begin{array}{ccc} x&y&z\end{array} \right) + \gamma \textbf{I}_3\\&= (1-\gamma ){\tilde{\textbf{s}} \tilde{s}'} + \gamma \textbf{I}_3, \end{aligned}$$

where \(x=\cos (L)\cos (l)\), \(y=\cos (L)\sin (l)\), \(z=\sin (L)\) are the (xyz)-coordinates of a three-dimensional Cartesian coordinate system. Then

$$\begin{aligned} |\mathbf{\Sigma (s)}|&= det\{(1-\gamma )\ {\tilde{\textbf{s}} \tilde{s}'} + \gamma \textbf{I}_3\}\\ {}&= \gamma ^3 \cdot det\left\{ \textbf{I}_3 +\frac{1-\gamma }{\gamma }{\tilde{\textbf{s}} \tilde{s}'}\right\} \\ {}&= \gamma ^3 \cdot det\left\{ 1 +\frac{1-\gamma }{\gamma }{\tilde{\textbf{s}}' \tilde{s}}\right\} \\ {}&= \gamma ^3 \cdot det\left\{ 1 +\frac{1-\gamma }{\gamma } \cdot 1\right\} \\ {}&= \gamma ^2 \end{aligned}$$

does not depend on \(\textbf{s}\). And for \(i \ne j\),

$$\begin{aligned} (\mathbf{\Sigma (s_i)+\Sigma (s_j)})^{-1} = \left( (1-\gamma ){\tilde{\textbf{s}}_i \tilde{s}_i'} + (1-\gamma ){\tilde{\textbf{s}}_j \tilde{s}_j'} + 2\gamma \textbf{I}_3 \right) ^{-1}. \end{aligned}$$

WLOG, we ignore the constant coefficients inside the inverse, and then

$$\begin{aligned} (\mathbf{\Sigma (s_i)+\Sigma (s_j)})^{-1}&= \left( {\tilde{\textbf{s}}_i \tilde{s}_i'} + {\tilde{\textbf{s}}_j \tilde{s}_j'} + \textbf{I}_3 \right) ^{-1}\\&= ({\tilde{\textbf{s}}_j \tilde{s}_j'} + \textbf{I}_3)^{-1} - ({\tilde{\textbf{s}}_j \tilde{s}_j'} + \textbf{I}_3)^{-1} {\tilde{\textbf{s}}_i}\\ {}&\quad [1+{\tilde{\textbf{s}}_i}'({\tilde{\textbf{s}}_j \tilde{s}_j'} + \textbf{I}_3)^{-1} {\tilde{\textbf{s}}_i}]^{-1} {\tilde{\textbf{s}}_i}' ({\tilde{\textbf{s}}_j \tilde{s}_j'} + \textbf{I}_3)^{-1}. \end{aligned}$$

Let \(\textbf{B}:= ({\tilde{\textbf{s}}}_j \tilde{s}_j' + \textbf{I}_3)^{-1}\), and so

$$\begin{aligned} (\mathbf{\Sigma (s_i)+\Sigma (s_j)})^{-1}&= \textbf{B} - \textbf{B} {\tilde{\textbf{s}}}_i (1+{\tilde{\textbf{s}}}_i' B \tilde{s}_i)^{-1}{\tilde{\textbf{s}}}_i' B=\textbf{B} - \frac{\textbf{B} {\tilde{\textbf{s}}}_\textbf{i} {\tilde{\textbf{s}}}_\mathbf{i'} \textbf{B}}{1+{\tilde{\textbf{s}}}_i' B \tilde{s}_i},\\ q^2({\textbf{s}_i,s_j})&\propto ({\tilde{\textbf{s}}}_i - \tilde{s}_j)' (\mathbf{\Sigma (s_i) + \Sigma (s_j)})^{-1} ({\tilde{\textbf{s}}}_i - \tilde{s}_j)\\&\propto ({\tilde{\textbf{s}}}_i - \tilde{s}_j)' \textbf{B} ({\tilde{\textbf{s}}}_i - \tilde{s}_j)-\frac{1}{1+{\tilde{\textbf{s}}_i' B \tilde{s}_i}} ({\tilde{\textbf{s}}}_i - \tilde{s}_j)' \textbf{B} {\tilde{\textbf{s}}}_\textbf{i} {\tilde{\textbf{s}}}_\mathbf{i'} \textbf{B} ({\tilde{\textbf{s}}}_i - \tilde{s}_j). \end{aligned}$$

So, computation of \(q({\textbf{s}_i,s_j})\) only involves terms \({\tilde{\textbf{s}}_i' B \tilde{s}_i}\), \({\tilde{\textbf{s}}_j' B \tilde{s}_j}\) and \({\tilde{\textbf{s}}_i' B \tilde{s}_j}\). Because

$$\begin{aligned} \textbf{B}=({\tilde{\textbf{s}}_j \tilde{s}_j'} + \textbf{I}_3)^{-1}=\textbf{I}_3-{\tilde{\textbf{s}}_j} (1+{\tilde{\textbf{s}}_j' \tilde{s}_j})^{-1} {\tilde{\textbf{s}}_j'}=\textbf{I}_3-\frac{1}{2}{\tilde{\textbf{s}}_j \tilde{s}_j'}, \end{aligned}$$

we have

$$\begin{aligned} {\tilde{\textbf{s}}}_i' B \tilde{s}_i&= {\tilde{\textbf{s}}}_i' \tilde{s}_i - \frac{1}{2}({\tilde{\textbf{s}}}_i' \tilde{s}_j)^2 = 1-\frac{1}{2}({\tilde{\textbf{s}}}_i' \tilde{s}_j)^2\\ {\tilde{\textbf{s}}_j' B \tilde{s}_j}&= {\tilde{\textbf{s}}_j' \tilde{s}_j} - \frac{1}{2}({\tilde{\textbf{s}}_j' \tilde{s}_j})^2 = 1-\frac{1}{2}=\frac{1}{2}\\ {\tilde{\textbf{s}}_i' B \tilde{s}_j}&= {\tilde{\textbf{s}}_i' \tilde{s}_j} - \frac{1}{2}({\tilde{\textbf{s}}_i' \tilde{s}_j}) ({\tilde{\textbf{s}}_j' \tilde{s}_j}) = {\tilde{\textbf{s}}_i' \tilde{s}_j}-\frac{1}{2}{\tilde{\textbf{s}}_i' \tilde{s}_j}=\frac{1}{2}{\tilde{\textbf{s}}_i' \tilde{s}_j}. \end{aligned}$$

Further,

$$\begin{aligned} {\tilde{\textbf{s}}_i' \tilde{s}_j} = \left[ ({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})-{\tilde{\textbf{s}}_i' \tilde{s}_i} - {\tilde{\textbf{s}}_j' \tilde{s}_j}\right] /2 = \left[ ({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})-2\right] /2. \end{aligned}$$

So, \(q({\textbf{s}_i,\textbf{s}_j})\) just depends on the distance \(({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})\). For the normalization term \(c({\textbf{s}_i, \textbf{s}_j})\), since we have proved that \(|\mathbf{\Sigma (s_i)}|=|\mathbf{\Sigma (s_j)}| \equiv \gamma ^2\),

$$\begin{aligned} \begin{aligned} c({\textbf{s}_i, \textbf{s}_j})&= |\mathbf{\Sigma (s_i)}|^{1/4} |\mathbf{\Sigma (s_j)}|^{1/4} |(\mathbf{\Sigma (s_i)}+\mathbf{\Sigma (s_j)})/2|^{-1/2}\\&\propto |(\mathbf{\Sigma (s_i)}+\mathbf{\Sigma (s_j)})^{-1}|^{1/2}\\&\propto \left( |(\mathbf{\Sigma (s_i)}+\mathbf{\Sigma (s_j)})^{-1}| \cdot |({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})|/[({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})] \right) ^{1/2}\\&\propto \left( |(\mathbf{\Sigma (s_i)}+\mathbf{\Sigma (s_j)})^{-1}| \cdot det\{({\tilde{\textbf{s}}_i - \tilde{s}_j})({\tilde{\textbf{s}}_i - \tilde{s}_j})'\}/[({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})] \right) ^{1/2}\\&\propto \left( det\left\{ (\mathbf{\Sigma (s_i)}+\mathbf{\Sigma (s_j)})^{-1} ({\tilde{\textbf{s}}_i - \tilde{s}_j})({\tilde{\textbf{s}}_i - \tilde{s}_j})'\right\} /[({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})] \right) ^{1/2}\\&\propto \left( det\left\{ ({\tilde{\textbf{s}}_i - \tilde{s}_j})' (\mathbf{\Sigma (s_i)}+\mathbf{\Sigma (s_j)})^{-1} ({\tilde{\textbf{s}}_i - \tilde{s}_j})\right\} /[({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})] \right) ^{1/2}\\&\propto \left\{ \frac{q^2({\textbf{s}_i,\textbf{s}_j})}{({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})} \right\} ^{1/2}. \end{aligned} \end{aligned}$$
(10)

We have proved that \(q({\textbf{s}_i,\textbf{s}_j})\) just depends on \(({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})\), so \(c({\textbf{s}_i, \textbf{s}_j})\) also only depends on the distance \(({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})\).

Overall, we can show

$$\begin{aligned} \rho _{NS}({\textbf{s}_i,\textbf{s}_j})=c({\textbf{s}_i,\textbf{s}_j})\rho (q({\textbf{s}_i,\textbf{s}_j})) \end{aligned}$$

only depends on the distance \(({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})\), where \(\rho (q)\) is a valid isotropic correlation function. So, \(\rho _{NS}({\textbf{s}_i,\textbf{s}_j})\) is isotropic. \(\square \)

Proof of Theorem 2

If \(\kappa ({\textbf{s}}) \equiv 0\) and \(\gamma _1(\cdot )\), \(\gamma _2(\cdot )\) depend on L only, then \(\mathcal {R}_x (\kappa (s)) \equiv \mathcal {R}_x (0) = \textbf{I}_3\). Then

$$\begin{aligned} {\tilde{\mathbf{\Sigma }}(s)} = \mathbf{D(\gamma (s))}=\left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \gamma _1(L) &{} 0 \\ 0 &{} 0 &{} \gamma _2(L) \end{array} \right) =\left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \gamma _1(L) &{} 0 \\ 0 &{} 0 &{} \gamma _1(L) \end{array} \right) + \left( \begin{array}{ccc} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \gamma _2(L)-\gamma _1(L) \end{array} \right) . \end{aligned}$$

Due to the results in Theorem 1, we have

$$\begin{aligned}{} & {} {\varvec{\Sigma }}({\textbf{s}})=\mathcal {R}_z (l) \mathcal {R}_y (L) {\tilde{\mathbf{\Sigma }}(s)} \mathcal {R}_y (L)' \mathcal {R}_z (l)'\\ {}{} & {} \quad =(1-\gamma _1(L)){\tilde{\textbf{s}} \tilde{s}'} + \gamma _1(L) \textbf{I}_3 + (\gamma _2(L)-\gamma _1(L)) {\tilde{\textbf{s}}^*} ({\tilde{\textbf{s}}^*})', \end{aligned}$$

where

$$\begin{aligned} {\tilde{\textbf{s}}^*}=\left( \begin{array}{c} \cos (l) \sin (L) \\ \sin (l) \sin (L) \\ \cos (L) \end{array} \right) \ \, \ \ ({\tilde{\textbf{s}}^{*}})' ({\tilde{\textbf{s}}^*})=1. \end{aligned}$$

Thus,

$$\begin{aligned} |\mathbf{\Sigma (s)}|&= det\{(1-\gamma _1(L))\ {\tilde{\textbf{s}} \tilde{s}'} + \gamma _1(L) \textbf{I}_3+ (\gamma _2(L)-\gamma _1(L)) {\tilde{\textbf{s}}^*} ({\tilde{\textbf{s}}^*})'\}\\&= \gamma _1(L)^3 \cdot det \left\{ \frac{1-\gamma _1(L)}{\gamma _1(L)} {\tilde{\textbf{s}} \tilde{s}'} + \frac{\gamma _2(L)-\gamma _1(L)}{\gamma _1(L)}{\tilde{\textbf{s}}^*} ({\tilde{\textbf{s}}^*})'+\textbf{I}_3 \right\} \\&= \gamma _1(L)^3 \cdot det \left\{ \left( \begin{array}{cc} \frac{1-\gamma _1(L)}{\gamma _1(L)} {\tilde{\textbf{s}}}&\frac{\gamma _2(L)-\gamma _1(L)}{\gamma _1(L)}{\tilde{\textbf{s}}^*} \end{array} \right) \left( \begin{array}{c} {\tilde{\textbf{s}}'} \\ ({\tilde{\textbf{s}}^*})' \end{array} \right) +\textbf{I}_3 \right\} \\&= \gamma _1(L)^3 \cdot det \left\{ \left( \begin{array}{c} {\tilde{\textbf{s}}'} \\ ({\tilde{\textbf{s}}^*})' \end{array} \right) \left( \begin{array}{cc} \frac{1-\gamma _1(L)}{\gamma _1(L)} {\tilde{\textbf{s}}}&\frac{\gamma _2(L)-\gamma _1(L)}{\gamma _1(L)}{\tilde{\textbf{s}}^*} \end{array} \right) +\textbf{I}_2 \right\} \\&= \gamma _1(L)^3 \cdot \left| \begin{array}{cc} \frac{1-\gamma _1(L)}{\gamma _1(L)}+1 &{} 2\sin (L)\cos (L)\\ 2\sin (L)\cos (L) &{} \frac{\gamma _2(L)-\gamma _1(L)}{\gamma _1(L)}+1 \end{array} \right| \\&= \gamma _1(L)\gamma _2(L) - 4\gamma _1(L)^3 \sin ^2(L) \cos ^2(L) \end{aligned}$$

only depend on L. WLOG, ignore \(\gamma _1(L)\), \(\gamma _2(L)\) again (they only depend on L),

$$\begin{aligned}&(\mathbf{\Sigma (s_i)+\Sigma (s_j)})^{-1} \\ {}&\quad = \left[ {\tilde{\textbf{s}}_i \tilde{s}_i'} + {\tilde{\textbf{s}}_i^*} ({\tilde{\textbf{s}}_i^*})' + {\tilde{\textbf{s}}_j \tilde{s}_j'} + {\tilde{\textbf{s}}_j^*} ({\tilde{\textbf{s}}_j^*})' + \textbf{I}_3 \right] ^{-1}\\ {}&= \left[ \left( \begin{array}{cc} {\tilde{\textbf{s}}_i}&{\tilde{\textbf{s}}_i^*} \end{array} \right) \left( \begin{array}{c} {\tilde{\textbf{s}}_i'} \\ ({\tilde{\textbf{s}}_i^*})' \end{array} \right) + \left( \begin{array}{cc} {\tilde{\textbf{s}}_j}&{\tilde{\textbf{s}}_j^*} \end{array} \right) \left( \begin{array}{c} {\tilde{\textbf{s}}_j'} \\ ({\tilde{\textbf{s}}_j^*})' \end{array} \right) + \textbf{I}_3 \right] ^{-1}\\&= \textbf{V}^{-1} - \textbf{V}^{-1} \left( \begin{array}{cc} {\tilde{\textbf{s}}_i}&{\tilde{\textbf{s}}_i^*} \end{array} \right) \left[ \textbf{I}_2 + \left( \begin{array}{c} {\tilde{\textbf{s}}_i'} \\ ({\tilde{\textbf{s}}_i^*})' \end{array} \right) \textbf{V}^{-1} \left( \begin{array}{cc} {\tilde{\textbf{s}}_i}&{\tilde{\textbf{s}}_i^*} \end{array} \right) \right] ^{-1} \left( \begin{array}{c} {\tilde{\textbf{s}}_i'} \\ ({\tilde{\textbf{s}}_i^*})' \end{array} \right) \textbf{V}^{-1}\\&= \textbf{V}^{-1} - \textbf{V}^{-1} \left( \begin{array}{cc} {\tilde{\textbf{s}}_i}&{\tilde{\textbf{s}}_i^*} \end{array} \right) \left[ \textbf{I}_2 + \left( \begin{array}{cc} {\tilde{\textbf{s}}_i'} \textbf{V}^{-1} {\tilde{\textbf{s}}_i} &{} {\tilde{\textbf{s}}_i'} \textbf{V}^{-1} {\tilde{\textbf{s}}_i^*} \\ ({\tilde{\textbf{s}}_i^*})' \textbf{V}^{-1} {\tilde{\textbf{s}}_i} &{} ({\tilde{\textbf{s}}_i^*})' \textbf{V}^{-1} {\tilde{\textbf{s}}_i^*} \end{array} \right) \right] ^{-1} \left( \begin{array}{c} {\tilde{\textbf{s}}_i'} \\ ({\tilde{\textbf{s}}_i^*})' \end{array} \right) \textbf{V}^{-1}, \end{aligned}$$

where

$$\begin{aligned} \textbf{V} = \left( \begin{array}{cc} {\tilde{\textbf{s}}_j}&{\tilde{\textbf{s}}_j^*} \end{array} \right) \left( \begin{array}{c} {\tilde{\textbf{s}}_j'} \\ ({\tilde{\textbf{s}}_j^*})' \end{array} \right) + \textbf{I}_3. \end{aligned}$$

Then

$$\begin{aligned} q^2({\textbf{s}_i,\textbf{s}_j}) \propto&({\tilde{\textbf{s}}_i}-{\tilde{\textbf{s}}_j})' (\mathbf{\Sigma (s_i)+\Sigma (s_j)})^{-1} ({\tilde{\textbf{s}}_i}-{\tilde{\textbf{s}}_j})\\ \propto&({\tilde{\textbf{s}}_i}-{\tilde{\textbf{s}}_j})' \textbf{V}^{-1} ({\tilde{\textbf{s}}_i}-{\tilde{\textbf{s}}_j}) - ({\tilde{\textbf{s}}_i}-{\tilde{\textbf{s}}_j})' \textbf{V}^{-1} \left( \begin{array}{cc} {\tilde{\textbf{s}}_i}&{\tilde{\textbf{s}}_i^*} \end{array} \right) \\ {}&\left[ \textbf{I}_2 + \left( \begin{array}{cc} {\tilde{\textbf{s}}_i'} \textbf{V}^{-1} {\tilde{\textbf{s}}_i} &{} {\tilde{\textbf{s}}_i'} \textbf{V}^{-1} {\tilde{\textbf{s}}_i^*} \\ ({\tilde{\textbf{s}}_i^*})' \textbf{V}^{-1} {\tilde{\textbf{s}}_i} &{} ({\tilde{\textbf{s}}_i^*})' \textbf{V}^{-1} {\tilde{\textbf{s}}_i^*} \end{array} \right) \right] ^{-1}\cdot \\&\left( \begin{array}{c} {\tilde{\textbf{s}}_i'} \\ ({\tilde{\textbf{s}}_i^*})' \end{array} \right) \textbf{V}^{-1}({\tilde{\textbf{s}}_i}-{\tilde{\textbf{s}}_j}). \end{aligned}$$

Because

$$\begin{aligned} \textbf{V}^{-1}&= \textbf{I}_3 - \left( \begin{array}{cc} {\tilde{\textbf{s}}_j}&{\tilde{\textbf{s}}_j^*} \end{array} \right) \left[ \textbf{I}_2 + \left( \begin{array}{cc} 1 &{} {\tilde{\textbf{s}}_j}' {\tilde{\textbf{s}}_j^*}\\ ({\tilde{\textbf{s}}_j})' {\tilde{\textbf{s}}_j} &{} 1 \end{array} \right) \right] ^{-1} \left( \begin{array}{c} {\tilde{\textbf{s}}_j'} \\ ({\tilde{\textbf{s}}_j^*})' \end{array} \right) \\&= \textbf{I}_3 - \frac{1}{4-({\tilde{\textbf{s}}_j}' {\tilde{\textbf{s}}_j^*})^2} \left( \begin{array}{cc} {\tilde{\textbf{s}}_j}&{\tilde{\textbf{s}}_j^*} \end{array} \right) \left[ \left( \begin{array}{cc} 2 &{} -{\tilde{\textbf{s}}_j}' {\tilde{\textbf{s}}_j^*}\\ -({\tilde{\textbf{s}}_j})' {\tilde{\textbf{s}}_j} &{} 2 \end{array} \right) \right] ^{-1} \left( \begin{array}{c} {\tilde{\textbf{s}}_j'} \\ ({\tilde{\textbf{s}}_j^*})' \end{array} \right) , \end{aligned}$$

we can figure out that the computation of \(q^2({\textbf{s}_i, \textbf{s}_j})\) only involves the following types of terms

$$\begin{aligned} \left\{ \begin{aligned} {\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_i} =&\, 1\\ {\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_i^*} =&\, {\tilde{\textbf{s}}_i}' \cdot \left[ (\tan (s_{i2})){\tilde{\textbf{s}}_i} + \left( 0,0,\cos (s_{i2})-\frac{\sin ^2(s_{i2})}{\cos (s_{i2})}\right) ' \right] \\ {}&= \tan (s_{i2}) + \sin (s_{i2})\left[ \cos (s_{i2})-\frac{\sin ^2(s_{i2})}{\cos (s_{i2})}\right] \\ ({\tilde{\textbf{s}}_i^*})' {\tilde{\textbf{s}}_i}^* =&1\\ ({\tilde{\textbf{s}}_i^*})' {\tilde{\textbf{s}}_j^*} \\ {}&= \left[ (\tan (s_{i2})){\tilde{\textbf{s}}_i} + \left( 0,0,\cos (s_{i2})-\frac{\sin ^2(s_{i2})}{\cos (s_{i2})} \right) ' \right] '\\ {}&\quad \cdot \left[ (\tan (s_{j2})){\tilde{\textbf{s}}_j} + \left( 0,0,\cos (s_{j2})-\frac{\sin ^2(s_{j2})}{\cos (s_{j2})} \right) ' \right] \\ =&\, \tan (s_{i2}) \tan (s_{j2}) ({\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_j}) + \tan (s_{i2}) \sin (s_{i2})\left[ \cos (s_{j2})-\frac{\sin ^2(s_{j2})}{\cos (s_{j2})}\right] \\ {}&+ \tan (s_{j2}) \sin (s_{j2}) \left[ \cos (s_{i2})-\frac{\sin ^2(s_{i2})}{\cos (s_{i2})}\right] \\ {}&+ \left[ \cos (s_{i2})-\frac{\sin ^2(s_{i2})}{\cos (s_{i2})}\right] \left[ \cos (s_{j2})-\frac{\sin ^2(s_{j2})}{\cos (s_{j2})}\right] \\ {\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_j^*} =&\tan (s_{j2})({\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_j}) + \sin (s_{i2})\left[ \cos (s_{j2})-\frac{\sin ^2(s_{j2})}{\cos (s_{j2})}\right] \\ {\tilde{\textbf{s}}_j}' {\tilde{\textbf{s}}_i^*} =&\tan (s_{i2})({\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_j}) + \sin (s_{j2})\left[ \cos (s_{i2})-\frac{\sin ^2(s_{i2})}{\cos (s_{i2})}\right] \\ {\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_j} =&\left[ ({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})-2\right] /2. \end{aligned} \right. \end{aligned}$$

We can change the index i to j for the first three terms, and they are still valid. Thus, these values only depend on \(s_{i2}\), \(s_{j2}\) and \({\tilde{\textbf{s}}_i}' {\tilde{\textbf{s}}_j}\), and \({\tilde{\textbf{s}}_i}' {\tilde{ \textbf{s}}_j}\) can be expressed in terms of the distance \(({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})\). The computation of \(q^2({\textbf{s}_i,\textbf{s}_j})\) only depends on the distance \(({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})\) and the longitudes \(s_{i2}\), \(s_{j2}\). Similar to (10) in the proof of Theorem 1, we can also show that \(c({\textbf{s}_i,\textbf{s}_j})\) is a function of \(({\tilde{\textbf{s}}_i - \tilde{s}_j})'({\tilde{\textbf{s}}_i - \tilde{s}_j})\), \(s_{i2}\) and \(s_{j2}\). Then \(\rho _{NS}({\textbf{s}_i,\textbf{s}_j})=c({\textbf{s}_i,\textbf{s}_j})\rho (q({\textbf{s}_i,\textbf{s}_j})):=\rho _A ({\tilde{\textbf{s}}_i - \tilde{s}_j}, s_{i2}, s_{j2})\), so it is axially symmetric. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., ZHANG, J., SUN, Z. et al. Locally Anisotropic Nonstationary Covariance Functions on the Sphere. JABES 29, 212–231 (2024). https://doi.org/10.1007/s13253-023-00573-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-023-00573-y

Keywords

Navigation