Skip to main content
Log in

Redox Nanostructuring of Biporous Nickel(II) Sintered Using a Space Holder

  • CHEMICAL TECHNOLOGY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

Permeable nickel metallic and nickel oxide ceramic materials with nanostructured surface and multilevel hierarchical porosity were created by cyclic redox post-treatment of biporous nickel(II) consolidated in the sintering–dissolution process. Additional levels of intraparticle porosity—Kirkendall pores and shrinkage nanopores—were formed during the stages of high-temperature oxidation in air and reduction in hydrogen, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kirillov, V.A., Fedorova, Z.A., Danilova, M.M., Zaikovskii, V.I., Kuzin, N.A., Kuzmin, V.A., Krieger, T.A., and Mescheryakov, V.D., Appl. Catal., A, 2011, vol. 401, pp. 170–175. https://doi.org/10.1016/j.apcata.2011.05.018

  2. Singh, H., Saxena, P., and Puri, Y.M., CIRP J. Manuf. Sci. Technol., 2021, vol. 33, pp. 339–368. https://doi.org/10.1016/j.cirpj.2021.03.014

    Article  Google Scholar 

  3. Trogadas, P., Ramani, V., Strasser, P., Fuller, T.F., and Coppens, M.O., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, pp. 122–148. https://doi.org/10.1002/anie.201506394

    Article  CAS  PubMed  Google Scholar 

  4. Alnarabiji, M.S., Tantawi, O., Ramli, A., Zabidi, N.A.M., Ghanem, O.B., and Abdullah, B., Renew. Sust. Energy Rev., 2019, vol. 114, p. 109326. https://doi.org/10.1016/j.rser.2019.109326

    Article  CAS  Google Scholar 

  5. Schwieger, W., Machoke, A.G., Weissenberger, T., Inayat, A., Selvam, T., Klumpp, M., and Inayat, A., Chem. Soc. Rev., 2016, vol. 45, pp. 3353–3376. https://doi.org/10.1039/C5CS00599J

    Article  CAS  PubMed  Google Scholar 

  6. Stanev, L., Kolev, M., Drenchev, B., and Drenchev, L., J. Manuf. Sci. Eng., 2017, vol. 139, p. 050802. https://doi.org/10.1115/1.4034440

    Article  Google Scholar 

  7. Gnedovets, A.G., Zelenskii, V.A., Ankudinov, A.B., and Alymov, M.I., Dokl. Chem., 2019, vol. 484, pp. 64–67. https://doi.org/10.1134/S0012500819020022

    Article  CAS  Google Scholar 

  8. Gnedovets, A.G., Zelensky, V.A., Ankudinov, A.B., Shustov, V.S., and Alymov, M.I., J. Phys.: Conf. Ser., 2021, vol. 1942, p. 012019. https://doi.org/10.1088/1742-6596/1942/1/012019

    Article  CAS  Google Scholar 

  9. Atwater, M.A., Met. Powder Rep., 2019, vol. 74, pp. 251–254. https://doi.org/10.1016/j.mprp.2019.01.004

    Article  Google Scholar 

  10. Faes, A., Hessler-Wyser, A., and Zryd, A., Membranes, 2012, vol. 2, pp. 585–664. https://doi.org/10.3390/membranes2030585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakamura, R., Lee, J.G., Mori, H., and Nakajima, H., Philos. Mag., 2008, vol. 88, pp. 257–264. https://doi.org/10.1080/14786430701819203

    Article  CAS  Google Scholar 

  12. Xiang, W., Dong, Z., Luo, Y., Zhao, J., Wang, J.O., Ibrahim, K., Zhan, H., Yue, W., and Guo, H., Materials, 2019, vol. 12, p. 805. https://doi.org/10.3390/ma12050805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Z., Yan, Y., Chen, Y., Han, W., Liu, M., Zhang, Y., Xiong, Y., Chen, K., Lv, Z., and Liu, M., J. Mater. Chem. A, 2017, vol. 5, pp. 20709–20719. https://doi.org/10.1039/C7TA04293K

    Article  CAS  Google Scholar 

  14. Chen, C., Wang, S., Peng, Z., and Ao, G., J. Mater. Sci.: Mater. Electron., 2019, vol. 30, pp. 11231–11238. https://doi.org/10.1007/s10854-019-01468-w

    Article  CAS  Google Scholar 

  15. Kharchenko, Y., Blikharskyy, Z., Vira, V., Vasyliv, B., and Podhurska, V., Appl. Nanosci., 2020, vol. 10, pp. 4535–4543. https://doi.org/10.1007/s13204-020-01391-1

    Article  CAS  Google Scholar 

  16. Kenel, C., Geisendorfer, N.R., Shah, R.N., and Dunand, D.C., Addit. Manuf., 2021, vol. 37, p. 101637. https://doi.org/10.1016/j.addma.2020.101637

    Article  CAS  Google Scholar 

  17. Jae, W., Song, J., Hong, J.J., and Kim, J., J. Alloys Compd., 2019, vol. 805, pp. 957–966. https://doi.org/10.1016/j.jallcom.2019.07.192

    Article  CAS  Google Scholar 

  18. Zhu, P., Wu, Z., and Zhao, Y., Scr. Mater., 2019, vol. 172, pp. 119–124. https://doi.org/10.1016/j.scriptamat.2019.07.019

    Article  CAS  Google Scholar 

  19. Xing, F., Ta, N., Zhong, J., Zhong, Y., and Zhang, L., Solid State Ionics, 2019, vol. 341, p. 115018. https://doi.org/10.1016/j.ssi.2019.115018

    Article  CAS  Google Scholar 

  20. Weinberg, K., Böhme, T., and Müller, W.H., Comput. Mater. Sci., 2009, vol. 45, pp. 827–831. https://doi.org/10.1016/j.commatsci.2008.09.028

    Article  CAS  Google Scholar 

  21. Choi, I.D., Matlock, D.K., and Olson, D.L., Mater. Sci. Eng., A, 1990, vol. 124, pp. L15–L18. https://doi.org/10.1016/0921-5093(90)90161-U

    Article  Google Scholar 

Download references

Funding

This work was supported within the framework of state order no. 075-00328-21-00 by the Russian Foundation for Basic Research (project no. 20-08-00960).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gnedovets.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnedovets, A.G., Zelenskii, V.A., Shustov, V.S. et al. Redox Nanostructuring of Biporous Nickel(II) Sintered Using a Space Holder. Dokl Chem 511, 191–196 (2023). https://doi.org/10.1134/S001250082360044X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001250082360044X

Keywords:

Navigation