Skip to main content
Log in

Estimation of the Efficiency of Oxalic Acid in the Solution Combustion Synthesis of a Catalyst for Production of Hydrogen and Carbon from Methane

  • CHEMICAL TECHNOLOGY
  • Published:
Doklady Chemistry Aims and scope Submit manuscript

Abstract

The parameters of the synthesis of catalysts by the solution combustion method using oxalic acid as a reducing agent were investigated. The activity of the catalysts was determined in the production of hydrogen and carbon nanofibers by the catalytic decomposition of methane. The efficiency of oxalic acid was demonstrated in the preparation of a nickel catalyst (90% Ni/10% Al2O3), which does not require the preliminary reduction with hydrogen. Regression analysis identified that the yields of carbon and hydrogen are most strongly affected by temperature among other synthesis parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Kuvshinov, D.G., Kurmashov, P.B., Bannov, A.G., Popov, M.V., and Kuvshinov, G.G., Int. J. Hydrogen Energy, 2019, vol. 44, no. 31, pp. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179

    Article  CAS  Google Scholar 

  2. Shen, Y. and Lua, A., J. Power Sources, 2015, vol. 280, pp. 467–475. https://doi.org/10.1016/j.jpowsour.2015.01.057

    Article  CAS  Google Scholar 

  3. Wang, H.Y. and Lua, A.C., Chem. Eng. J., 2015, vol. 262, pp. 1077–1089. https://doi.org/10.1016/J.CEJ.2014.10.063

    Article  CAS  Google Scholar 

  4. Kenzhin, R.M., Bauman, Y.I., Volodin, A.M., Mishakov, I.V., and Vedyagin, A.A., Appl. Surf. Sci., 2018, vol. 427, pp. 505–510. https://doi.org/10.1016/j.apsusc.2017.08.227

    Article  CAS  Google Scholar 

  5. Muto, T., Asahara, M., Miyasaka, T., Asato, K., Uehara, T., and Koshi, M., Chem. Eng. Sci., 2023, vol. 274, p. 117931. https://doi.org/10.1016/j.ces.2022.117931

    Article  CAS  Google Scholar 

  6. Kurmashov, P.B., Bannov, A.G., Popov, M.V., Kazakova, A.A., Ukhina, A.V., and Kuvshinov, G.G., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, pp. 1874–1881. https://doi.org/10.1134/S1070427218110198

    Article  CAS  Google Scholar 

  7. Kurmashov, P.B., Bannov, A.G., Popov, M.V., Brester, A.E., Ukhina, A.V., Ishenko, A.V., Maksimovskii, E.A., Tolstobrova, L.I., Chulkov, A.O., and Kuvshinov, G.G., Int. J. Energy Res., 2022, vol. 46, no. 9, pp. 11957–11971. https://doi.org/10.1002/er.7964

    Article  CAS  Google Scholar 

  8. Kingsley, J.J. and Patil, K.C., Mater. Lett., 1988, vol. 6, nos. 11–12, pp. 427–432. https://doi.org/10.1016/0167-577X(88)90045-6

    Article  CAS  Google Scholar 

  9. Prakash, A.S., Khadar, A.M.A., Patil, K.C., and Hegde, M.S., J. Mater. Synth. Process., 2002, vol. 10, pp. 135–141. https://doi.org/10.1023/A:1021986613158

    Article  CAS  Google Scholar 

  10. Popov, M.V. and Bannov, A., G, AIP Conf. Proc., 2022, vol. 2390, no. 1, p. 020060. https://doi.org/10.1063/5.0070001

    Article  CAS  Google Scholar 

  11. Ermakova, M.A., Ermakov, D.Yu., Kuvshinov, G.G., and Plyasova, L.M., J. Catal., 1999, vol. 187, no. 1, pp. 77–84. https://doi.org/10.1006/jcat.1999.2562

    Article  CAS  Google Scholar 

  12. Kuvshinov, G.G., Mogilnykh, Yu.I., Kuvshinov, D.G., Zaikovskii, V.I., and Avdeeva, L.B., Carbon, 1998, vol. 36, nos. 1–2, pp. 87–97. https://doi.org/10.1016/S0008-6223(97)00131-0

    Article  CAS  Google Scholar 

  13. Kuvshinov, G.G., Popov, M.V., Tonkodubov, S.E., and Kuvshinov, G.G., Russ. J. Appl. Chem., 2016, vol. 89, no. 11, pp. 1777–1785. https://doi.org/10.1134/S1070427216110070

    Article  CAS  Google Scholar 

  14. Krutskii, Yu.L., Bannov, A.G., Sokolov, V.V., Dykova, K.D., Shinkarev, V.V., Ukhina, A.V., Maksimovskii, E.A., Pichugin, A.Yu., Solov’ev, E.A., Krutskaya, T.M., and Kuvshinov, G.G., Nanotechnol. Russ., 2013, vol. 8, nos 3-4, pp. 3212–3217. https://doi.org/10.1134/S1995078013020109

    Article  Google Scholar 

  15. Krutskii, Yu.L., Bannov, A.G., Antonova, E.V., Sokolov, V.V., Pichugin, A.Yu., Maksimovskii, E.A., Krutskaya, T.M., Netskina, O.V., and Bataev, I.A., Ceram. Int., 2017, vol. 43, no. 3, pp. 3212–3217. https://doi.org/10.1016/j.ceramint.2016.11.146

    Article  CAS  Google Scholar 

  16. Brester, A.E., Golovakhin, V.V., Novgorodtseva, O.N., Lapekin, N.I., Shestakov, A.A., Ukhina, A.V., Prosa-nov, I.Yu., Maksimovskii, E.A., Popov, M.V., and Bannov, A.G., Dokl. Chem., 2021, vol. 501, no. 2, pp. 264–269. https://doi.org/10.1134/S0012500821120016

    Article  CAS  Google Scholar 

  17. Bannov, A.G. Prášek, J., Jašek, O., Shibaev, A.A., and Zajíčková, L., Proc. of the 2016 39th International Spring Seminar on Electronics Technology (ISSE), Pilsen, Czech Republic, May 18–22, 2016, vol. 2016, pp. 449–451. https://doi.org/10.1109/ISSE.2016.7563238

  18. Bannov, A.G., Popov, M.V., Brester, A.E., and Kurmashov, P.B., Micromachines, 2021, vol. 12, no. 2, p. 186. https://doi.org/10.3390/mi12020186

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shinkarev, V.V., Glushenkov, A.M., Kuvshinov, G.G., and Kuvshinov, D.G., Appl. Catal., vol. 85, nos. 3–4, pp. 180–191. https://doi.org/10.1016/j.apcatb.2008.07.011

  20. Shinkarev, V.V., Glushenkov, A.M., Kuvshinov, G.G., and Kuvshinov, D.G., Carbon, 2010, vol. 48, no. 7, pp. 2004–2012. https://doi.org/10.1016/j.carbon.2010.02.008

    Article  CAS  Google Scholar 

  21. Bannov, A.G., Uvarov, N.F., Shilovskaya, S.M., and Kuvshinov, G.G., Nanotechnol. Russ., 2012, vol. 7, nos. 3–4, pp. 169–177. https://doi.org/10.1134/S1995078012020048

    Article  Google Scholar 

  22. Dong, Y., Ni, Q., Li, L., and Fu, Y., Mater. Lett., 2014, vol. 132, pp. 206–209. https://doi.org/10.1016/j.matlet.2014.06.084

    Article  CAS  Google Scholar 

  23. Li, Y., Li, D., and Wang, G., Catal. Today, 2011, vol. 162, no. 1, pp. 1–48. https://doi.org/10.1016/j.cattod.2010.12.042

    Article  CAS  Google Scholar 

  24. Hadian, M., Marrevee, D.P.F., Buist, K.A., Reesink, B.H., Bos, R., Bavel, A.P., and Kuipers, H.A.M., Chem. Eng. Sci., 2022, vol. 260, no. 22, p. 117938. https://doi.org/10.1016/j.ces.2022.117938

    Article  CAS  Google Scholar 

  25. Roslyakov, S.I. and Kovalev, D., Yu., Rogachev, A.S., Manukyan, H., and Mukas’yan, A.S., Dokl. Phys. Chem., 2013, vol. 449, no. 1, pp. 48–51. https://doi.org/10.1134/S0012501613030068

    Article  CAS  Google Scholar 

  26. Kachala, V.V., Khemchyan, L.L., Kashin, A.S., Orlov, N.V., Grachev, A.A., Zalesskiy, S.S., and Ananikov, V.P., Russ. Chem. Rev., 2013, vol. 82, no. 7, pp. 648–685. https://doi.org/10.1070/rc2013v082n07abeh004413

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Department of Structural Studies, Zelinsky Institute of Organic Chemistry RAS, for studying the samples by electron microscopy.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (state task, project no. FSUN-2023-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kurmashov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmashov, P.B., Popov, M.V., Brester, A.E. et al. Estimation of the Efficiency of Oxalic Acid in the Solution Combustion Synthesis of a Catalyst for Production of Hydrogen and Carbon from Methane. Dokl Chem 511, 209–216 (2023). https://doi.org/10.1134/S0012500823600426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012500823600426

Keywords:

Navigation