Skip to main content
Log in

2(3H)-Dihydrofranolactone metabolites from Pleosporales sp. NUH322 as anti-amyotrophic lateral sclerosis drugs

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating motor disease with limited treatment options. A domestic fungal extract library was screened using three assays related to the pathophysiology of ALS with the aim of developing a novel ALS drug. 2(3H)-dihydrofuranolactones 1 and 2, and five known compounds 37 were isolated from Pleosporales sp. NUH322 culture media, and their protective activity against the excitotoxicity of β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamatergic agonist, was evaluated under low mitochondrial glutathione levels induced by ethacrynic acid (EA) and low sulfur amino acids using our developed ODAP-EA assay. Additional assays evaluated the recovery from cytotoxicity caused by transfected SOD1-G93A, an ALS-causal gene, and the inhibitory effect against reactive oxygen species (ROS) elevation. The structures of 1 and 2 were elucidated using various spectroscopic methods. We synthesized 1 from D-ribose, and confirmed the absolute structure. Isolated and synthesized 1 displayed higher ODAP-EA activities than the extract and represented its activity. Furthermore, exhibited protective activity against SOD1-G93A-induced toxicity. An ALS mouse model, SOD1-G93A, of both sexes, was treated orally with 1 at pre- and post-symptomatic stages. The latter treatment significantly extended their lifespan (p = 0.03) and delayed motor deterioration (p = 0.001–0.01). Our result suggests that 1 is a promising lead compound for the development of ALS drugs with a new spectrum of action targeting both SOD1-G93A proteopathy and excitotoxicity through its action on the AMPA-type glutamatergic receptor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA (2019) ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 13:1310. https://doi.org/10.3389/fnins01310

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bensimon G, Lacomblez L, Meininger V, ALS/Riluzole Study Group (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330:585–591. https://doi.org/10.1056/NEJM199403033300901

    Article  Google Scholar 

  3. Estevez AG, Stutzmann JM, Barbeito L (1995) Protective effect of riluzole on excitatory amino acid-mediated neurotoxicity in motoneuron-enriched cultures. Eur J Pharmacol 280:47–53. https://doi.org/10.1016/0014-2999(95)00186-o

    Article  PubMed  CAS  Google Scholar 

  4. Doble A (1996) The pharmacology and mechanism of action of riluzole. Neurology 47(6 Suppl 4):S233–S241. https://doi.org/10.1212/wnl.47.6_suppl_4.233s

    Article  PubMed  CAS  Google Scholar 

  5. Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S (2016) The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 6:28649. https://doi.org/10.1038/srep28649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aoki M, Warita H, Mizuno H et al (2011) Feasibility study for functional test battery of SOD transgenic rat (H46R) and evaluation of edaravone, a free radical scavenger. Brain Res 1382:321. https://doi.org/10.1016/j.brainres.2011.01.058

    Article  PubMed  CAS  Google Scholar 

  7. Ueda T, Inden M, Shirai K, Sekine SI, Masaki Y, Kurita H, Ichihara K, Inuzuka T, Hozumi I (2017) The effects of Brazilian green propolis that contains flavonols against mutant copper-zinc superoxide dismutase-mediated toxicity. Sci Rep 7(1):2882. https://doi.org/10.1038/s41598-017-03115-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Núñez O, Pallás M, Portero-Otin M, Osta R, Navarro X (2014) Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 11(2):419–432. https://doi.org/10.1007/s13311-013-0253-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. West M, Mhatre M, Ceballos A et al (2004) The arachidonic acid 5-lipoxygenase inhibitor nordihydroguairetic acid inhibits tumor necrosis activation of microglia and extends survival of G93A-SOD1 transgenic miceb. J Neurochem 91:133–143. https://doi.org/10.1111/j.1471-4159.2004.02700.x

    Article  PubMed  CAS  Google Scholar 

  10. Fontanilla CV, Wei X, Zhao L, Johnstone B, Pascuzzi RM, Farlow MR, Du Y (2011) Caffeic acid phenethyl ester extends survival of a mouse model of amyotrophic lateral sclerosis. Neuroscience 15(205):185–193. https://doi.org/10.1016/j.neuroscience.2011.12.025

    Article  CAS  Google Scholar 

  11. Xu Z, Chen S, Li X, Luo G, Li L (2006) Le W (2006) Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 31(10):1263–1269. https://doi.org/10.1007/s11064-006-9166-z

    Article  PubMed  CAS  Google Scholar 

  12. Dutta K, Thammisetty SS, Boutej H et al (2020) Mitigation of ALS pathology by neuron- specific inhibition of nuclear factor Kappa B signaling. J Neurosci 40:5137–5153. https://doi.org/10.1523/JNEUROSCI.0536-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, Ladner KJ, Bevan AK, Foust KD, Godbout JP, Popovich PG, Guttridge DC, Kaspar BK (2014) Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81(5):1009–1023. https://doi.org/10.1016/j.neuron.01.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kaspar BK, Lladó J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301(5634):839–842. https://doi.org/10.1126/science.1086137

    Article  PubMed  CAS  Google Scholar 

  15. Azzouz M, Ralph GS, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417. https://doi.org/10.1038/nature02544

    Article  PubMed  CAS  Google Scholar 

  16. Bianchi VE, Locatelli V, Rizzi L (2017) Neurotrophic and neuroregenerative effects of GH/IGF1. Int J Mol Sci 18(11):2441. https://doi.org/10.3390/ijms18112441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Egawa N, Kitaoka S, Tsukita K et al. (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4(145):145ra104. https://doi.org/10.1126/scitranslmed.3004052

  18. Wong SQ, Pontifex MG, Phelan MM et al (2018) α-Methyl-α-phenylsuccinimide ameliorates neurodegeneration in a C. elegans model of TDP-43 proteinopathy. Neurobiol Dis 118:40–54. https://doi.org/10.1016/j.nbd.2018.06.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Srinivasan E, Rajasekaran R (2018) Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: a quantum chemical and molecular mechanics study. BioFactors 4(5):431–442. https://doi.org/10.1002/biof.1441

    Article  CAS  Google Scholar 

  20. Maurel C, Chami AA, Thépault RA, Marouillat S, Blasco H, Corcia P, Andres CR, Vourc’h PA (2020) A role for SUMOylation in the formation and cellular localization of TDP-43 aggregates in amyotrophic lateral sclerosis. Mol Neurobiol 57(3):1361–1373. https://doi.org/10.1007/s12035-019-01810-7

    Article  PubMed  CAS  Google Scholar 

  21. Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0018-2016

  22. Willis CL, Meldrum BS, Nunn PB, Anderton BH, Leigh PN (1993) Neuronal damage induced by beta-N-oxalylamino-L-alanine, in the rat hippocampus, can be prevented by a non-NMDA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Brain Res 627(1):55–62. https://doi.org/10.1016/0006-8993(93)90748-c.

  23. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1–3):6–18. https://doi.org/10.1016/j.ejphar.2012.10.032

    Article  PubMed  CAS  Google Scholar 

  24. Kusama-Eguchi K, Miyano T, Yamamoto M et al (2014) New insight into the mechanism of neurolathyrism: L-ß-ODAP triggers [Ca2+]i accumulation and cell death in primary motor neurons through transient receptor potential channels and metabotropic glutamate receptors. Food Chem Toxicol 67:113–22. https://doi.org/10.1016/j.fct.2014.02.021

  25. Cashman NR, Durham HD, Blusztajn JK et al (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221. https://doi.org/10.1002/aja.1001940306

    Article  PubMed  CAS  Google Scholar 

  26. Eggett CJ, Crosier S, Manning P et al (2000) Development and characterization of a glutamate-sensitive motor neuron cell line. J Neurochem 74:1895–1902. https://doi.org/10.1046/j.1471-4159.2000.0741895.x

    Article  PubMed  CAS  Google Scholar 

  27. Ravindranath V (2002) Neurolathyrism: mitochondrial dysfunction in excitotoxicity mediated by L-beta-oxalyl aminoalanine. Neurochem Int 40(6):505–509. https://doi.org/10.1016/s0197-0186(01)00121-8

    Article  PubMed  CAS  Google Scholar 

  28. Kusama-Eguchi K, Yoshino N, Minoura A et al (2011) Sulfur amino acids deficiency cause by grass pea diet plays an important role in the toxicity of L-ß-ODAP by increasing the oxidative stress: Studies on a motor neuron cell line. Food Chem Toxicol 49:636–643. https://doi.org/10.1016/j.fct.2010.07.049

    Article  PubMed  CAS  Google Scholar 

  29. Dukhande VV, Kawikova I (2013) Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis 18:702. https://doi.org/10.1007/s10495-013-0836-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Trumbull KA, McAllister D, Gandelman MM, Fung WY, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman JS (2012) Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol 45(1):137–144. https://doi.org/10.1016/j.nbd.2011.07.015

  31. Urushitani M, Kurisu J, Tsukita K, Takahashi R (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 83:1030–1042. https://doi.org/10.1046/j.1471-4159.2002.01211.x

  32. Hyun DH, Lee M, Halliwell B, Jenner P (2003) Proteasomal inhibition causes the formation of protein aggregates containing a wide range of proteins, including nitrated proteins. J Neurochem 86(2):363–373. https://doi.org/10.1046/j.1471-4159.2003.01841.x

    Article  PubMed  CAS  Google Scholar 

  33. Hirose D, Shirouzu T, Hirota M, Ohtsuka T, Senga T, Du M, Shimono A, Zhang X (2009) Species richness and species composition of fungal communities associated with cellulose decomposition at different altitudes on the Tibetan Plateau. J Plant Ecolo 2:217–224. https://doi.org/10.1093/jpe/rtp028

    Article  Google Scholar 

  34. Evidente A, Sparapano L, Fierro O, Bruno G, Motta A (1999) Sapinofuranones A and B, two new 2(3H)-dihydrofuranones produced by sphaeropsis sapinea, a common pathogen of conifers. J Nat Prod 62(2):253–256. https://doi.org/10.1021/np980318t

  35. Mondol MA, Farthouse J, Islam MT, Schüffler A, Laatsch H (2017) Metabolites from the endophytic fungus Curvularia sp. M12 Act as motoity inhibitors against Phytophthora capsici zoospores. J Nat Prod 80(2):347–355. https://doi.org/10.1021/acs.jnatprod.6b00785

  36. Masi M, Maddau L, Linaldeddu BT, Cimmino A, D'Amico W, Scanu B, Evidente M, Tuzi A, Evidente A (2016) Bioactive secondary metabolites produced by the oak pathogen Diplodia corticola. J Agric Food Chem 64: 217–225. https://doi.org/10.1021/acs.jafc.5b05170

  37. Suciati FJA, Lambert LK, Pierens GK, Bernhardt PV, Garson MJ (2013) Secondary metabolites of the sponge-derived fungus Acremonium persicinum. J Nat Prod 76(8):1432–1440. https://doi.org/10.1021/np4002114

    Article  PubMed  CAS  Google Scholar 

  38. Nagarapu L, Karnakanti S, Bantu S (2012) Total synthesis of sapinofuranone A from D-ribose. Tetrahedron 68:5829–5832. https://doi.org/10.1026/j.tet.2012.05.012

    Article  CAS  Google Scholar 

  39. Yadav JS, Mandal SS, Reddy JSS, Srihari P (2011) Stereoselective total synthesis of (+)-sapinofuranone B. Tetrahedron 67:4620–4627. https://doi.org/10.1016/j.tet.2011.04.072

    Article  CAS  Google Scholar 

  40. Miller RG, Mitchell JD, Moore DH (2012) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database System Rev. https://doi.org/10.1002/14651858.CD001447.pub3

  41. Writing Group (2017) Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16:505–512. https://doi.org/10.1016/S1474-4422(17)30115-1

    Article  Google Scholar 

  42. Okano H, Yasuda D, Fujimori K, Morimoto S, Takahashi S (2020) Ropinirole, a new ALS drug candidate developed using iPSCs. Trends Pharmacol Sci 41(2):99–109. https://doi.org/10.1016/j.tips.2019.12.002

    Article  PubMed  CAS  Google Scholar 

  43. Osaki T, Uzel SGM, Kamm RD (2018) Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci Adv 10;4(10):eaat5847. https://doi.org/10.1126/sciadv.aat5847

  44. Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G et al (2022) Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 387(12):1099–1110. https://doi.org/10.1056/NEJMoa2204705

  45. Handley EE, Reale LA, Chuckowree JA, Dyer MS, Barnett GL, Clark CM, Bennett W, Dickson TC, Blizzard CA (2022) Estrogen enhances dendrite spine function and recovers deficits in neuroplasticity in the prpTDP-43A315T mouse model of amyotrophic lateral sclerosis. Mol Neurobiol 59(5):2962–2976. https://doi.org/10.1007/s12035-022-02742-535249200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Van Damme P, Leyssen M, Callewaert G, Robberecht W, Van Den Bosch L (2003) The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett 343:81–84. https://doi.org/10.1016/s0304-3940(03)00314-8

  47. Heath PR, Shaw PJ (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26(4):438–58. https://doi.org/10.1002/mus.10186

  48. Dong L, Kim HJ, Cao TQ, Liu Z, Lee H, Ko W, Kim YC, Sohn JH, Kim TK, Yim JH, Lee DS, Oh H (2021) Anti-inflammatory effects of metabolites from antarctic fungal strain Pleosporales sp. SF-7343 in HaCaT human keratinocytes. Int J Mol Sci 22(18):9674. https://doi.org/10.3390/ijms22189674

  49. Liu J, Lillo C, Jonsson PA et al (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43:5–17. https://doi.org/10.1016/j.neuron.2004.06.016

    Article  PubMed  CAS  Google Scholar 

  50. Vijayvergiya C, Beal MF, Buck J, Manfredi G (2005) Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci 25(10):2463–2470. https://doi.org/10.1523/JNEUROSCI.4385-04.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. ADF2019, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  52. Barber SC, Higginbottom A, Mead RJ, Barber S, Shaw PJ (2009) An in vitro screening cascade to identify neuroprotective antioxidants in ALS. Free Radic Biol Med. 46(8):1127–1138. https://doi.org/10.1016/j.freeradbiomed.2009.01.019

Download references

Acknowledgements

We are grateful to Mr. Masaki Watanabe, M.S., and Mr. Atsuhiro Suda, B.S., for their excellent assistance in obtaining and analyzing some of the in vitro data.

Funding

Part of this work was supported by A Grant from the Ministry of Education, Culture, Sports, Science, and Technology to promote 2001-multidisciplinary research projects (2007–2011), Nihon University Multidisciplinary Research Grant No. 12-021 and 13-023 (2012–2013), and Grant-in-Aid for Scientific Research (Kuniko Kusama No. 22590088 (2010–2012).

Author information

Authors and Affiliations

Authors

Contributions

KKE, YT, AM, YY, and KM contributed to collecting data in the screening of fungal extracts and other in vitro assays. KKE, YY, and YK contributed and analyzed the animal experiment data. DH and YO have established the fungal extracts library and identified NUH322 and other fungi listed in this report. YT, YY, MF, EO, MM, KM, and AO contributed to obtaining and analyzing the natural substances from Pleosporales sp. NUH322. MM contributed to the synthesis of compound 1. KW supervised the whole biological experiments.

Corresponding authors

Correspondence to Kuniko Kusama-Eguchi or Ayumi Ohsaki.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4756 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusama-Eguchi, K., Tokui, Y., Minoura, A. et al. 2(3H)-Dihydrofranolactone metabolites from Pleosporales sp. NUH322 as anti-amyotrophic lateral sclerosis drugs. J Nat Med 78, 146–159 (2024). https://doi.org/10.1007/s11418-023-01751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01751-5

Keywords

Navigation