Skip to main content
Log in

The Role of the WGR Domain in the Functions of PARP1 and PARP2

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The PARP1 and PARP2 proteins are members of the poly(ADP-ribose) polymerase family involved in the regulation of DNA repair and replication, RNA processing, ribosome biogenesis, transcription, cell division, and cell death. PARP1 and PARP2 are promising targets for the development of anticancer drugs and can be used in the treatment of cardiovascular, neurodegenerative, and other disorders. The WGR domain has been shown to play a central role in the functioning of PARP1 and PARP2 proteins. This review considers the mechanisms of functioning of WGR domains in the PARP1 and PARP2 proteins, which have several similar and specialized properties. Understanding these processes is of great interest to fundamental science and can contribute to the development of more effective and selective inhibitors of PARP1 and PARP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Amé J.C., Spenlehauer C., de Murcia G. 2004. The PARP superfamily. BioEssays. 26, 882‒893.

    Article  PubMed  Google Scholar 

  2. Langelier M.F., Riccio A.A., Pascal J.M. 2014. PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res. 42, 7762‒7775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Žaja R., Mikoč A.,Barkauskaite E., Ahel I. 2013. Molecular insights into poly(ADP-ribose) recognition and processing. Biomolecules. 3 (1), 1‒17.

    Article  Google Scholar 

  4. Kraus W.L. 2020. PARPs and ADP-ribosylation: 60 years on. Genes Dev. 34, 51–53.

    Article  Google Scholar 

  5. Ali S.O., Khan F.A., Galindo-Campos M.A., Yelamos J. 2016. Understanding specific functions of PARP-2: New lessons for cancer therapy. Am. J. Cancer Res. 6, 1842‒1863.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dantzer F., Santoro R. 2013. The expanding role of PARPs in the establishment and maintenance of heterochromatin. FEBS J. 280, 3508‒3518.

    Article  CAS  PubMed  Google Scholar 

  7. Sutcu H.H., Matta E., Ishchenko A.A. 2019. Role of PARP-catalyzed ADP-ribosylation in the crosstalk between DNA strand breaks and epigenetic regulation. J. Mol. Biol. 432, 1769‒1771.

    Article  PubMed  Google Scholar 

  8. Azarm K., Smith S. 2020. Nuclear PARPs and genome integrity. Genes Dev. 34, 285‒301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eisemann T., Pascal J.M. 2020. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell. Mol. Life Sci. 77, 19‒33.

    Article  CAS  PubMed  Google Scholar 

  10. Shieh W.M., Ame J.C., Wilson M.V., Wang Z.Q., Koh D.W., Jacobson M.K., Jacobson E.L. 1998. P-oly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem. 273, 30069–30072.

    Article  CAS  PubMed  Google Scholar 

  11. Ame J.C., Rolli V., Schreiber V., Niedergang C., Apiou F., DeckerP., Muller S., Hoger T., Menissier-de Murcia J., de Murcia G. 1999. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860‒17868.

    Article  CAS  PubMed  Google Scholar 

  12. Navarro J., Gozalbo-Lopez B., Mendez A.C., Dantzer F., Schreiber V., Martinez C., Arana D.M., Farres J., Revilla-Nuin B., Bueno M.F., Ampurdanes C., Galindo-Campos M.A., Knobel P.A., Segura-Bayona S., Martin-Caballero J., Stracker T.H., Aparicio P., Del Val M., Yelamos J. 2017. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci. Rep. 7, 41962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Menissier de Murcia J., Ricoul M., Tartier L., Niedergang C., Huber A., Dantzer F., Schreiber V., Ame J.C., Dierich A., LeMeur M., Sabatier L., Chambon P., de Murcia G. 2003. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255‒2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kutuzov M.M., Khodyreva S.N., Schreiber V., Lavrik O.I. 2014. Role of PARP2 in DNA repair. Mol. Biol. (Moscow). 48, 485–495.

    Article  CAS  Google Scholar 

  15. Kutuzov M.M., Khodyreva S.N., Ame J.C., Ilina E.S., Sukhanova M.V., Schreiber V., Lavrik O.I. 2013. Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie. 95, 1208‒1215.

    Article  CAS  PubMed  Google Scholar 

  16. Dantzer F., Mark M., Quenet D., Scherthan H., Huber A., Liebe B., Monaco L., Chicheportiche A., Sassone-Corsi P., de Murcia G., Menissier-de Murcia J. 2006. Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc. Natl. Acad. Sci. U. S. A. 103, 14854‒14859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Soni U.K., Chadchan S.B., Joshi A., Kumar V., Maurya V.K., Verma R.K., Jha R.K. 2020. Poly(ADP-ribose) polymerase-2 is essential for endometrial receptivity and blastocyst implantation, and regulated by caspase-8. Mol. Cell Endocrinol. 518, 110946‒11061.

    Article  CAS  PubMed  Google Scholar 

  18. Verma R.K., Soni U.K., Chadchan S.B., Maurya V.K., Soni M., Sarkar S., Pratap J.V., Jha R.K. 2022. miR-149-PARP-2 signaling regulates E-cadherin and N-cadherin expression in the murine model of endometrium receptivity. Reprod. Sci. 29, 975‒992.

    Article  CAS  PubMed  Google Scholar 

  19. Janko L., Sari Z., Kovacs T., Kis G., Szanto M., Antal M., Juhasz G., Bai P. 2020. Silencing of PARP2 blocks autophagic degradation. Cells. 9, 380‒401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leger K., Bar D., Savic N., Santoro R., Hottiger M.O. 2014. ARTD2 activity is stimulated by RNA. Nucleic Acids Res. 42, 5072‒5082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wurtmann E.J., Wolin S.L. 2009. RNA under attack: Cellular handling of RNA damage. Crit. Rev. Biochem. Mol. Biol. 44, 34‒49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Z., Wu J., Deleo C.J. 2006. RNA damage and surveillance under oxidative stress. IUBMB Life. 58, 581‒588.

    Article  CAS  PubMed  Google Scholar 

  23. Bonfiglio J.J., Fontana P., Zhang Q., Colby T., Gibbs-Seymour I., Atanassov I., Bartlett E., Zaja R., Ahel I., Matic I. 2017. Serine ADP-ribosylation depends on HPF1. Mol. Cell. 65, 932‒940.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matkarimov B.T., Zharkov D.O., Saparbaev M.K. 2020. Mechanistic insight into the role of poly(ADP-ribosyl)ation in DNA topology modulation and response to DNA damage. Mutagenesis. 35, 107‒118.

    Article  CAS  PubMed  Google Scholar 

  25. van Beek L., McClay E., Patel S., Schimpl M., Spagnolo L., Maia de Oliveira T. 2021. PARP power: A structural perspective on PARP1, PARP2, and PARP3 in DNA damage repair and nucleosome remodelling. Int. J. Mol. Sci. 22, 5112‒5135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rudolph J., Jung K., Luger K. 2022. Inhibitors of PARP: Number crunching and structure gazing. Proc. Natl. Acad. Sci. U. S. A. 119, e2121979119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D'Silva I., Pelletier J.D., Lagueux J., D’Amours D., Chaudhry M.A., Weinfeld M., Lees-Miller S.P., Poirier G.G. 1999. Relative affinities of poly(ADP-ribose) polymerase and DNA-dependent protein kinase for DNA strand interruptions. Biochim. Biophys. Acta. 1430, 119‒126.

    Article  CAS  PubMed  Google Scholar 

  28. Pion E., Bombarda E., Stiegler P., Ullmann G.M., Mély Y., de Murcia G., Gérard D. 2003. Poly(ADP-ribose) polymerase-1 dimerizes at a 5' recessed DNA end in vitro: A fluorescence study. Biochemistry. 42, 12409‒12417.

    Article  CAS  PubMed  Google Scholar 

  29. Lonskaya I., Potaman V.N., Shlyakhtenko L.S., Oussatcheva E.A., Lyubchenko Y.L., Soldatenkov V.A. 2005. Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J. Biol. Chem. 280, 17076‒17083.

    Article  CAS  PubMed  Google Scholar 

  30. Eustermann S., Videler H., Yang J.C., Cole P.T., Gruszka D., Veprintsev D., Neuhaus D. 2011. The DNA-binding domain of humanPARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J. Mol. Biol. 407, 149‒170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langelier M.F., Planck J.L., Roy S., Pascal J.M. 2011. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: Structural and functional insights into DNA-dependent PARP-1 activity. J. Biol. Chem. 286, 10690‒10701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langelier M.F., Planck J.L., Roy S., Pascal J.M. 2012. Structural basis for DNA damage-dependent p-oly(ADP-ribosyl)ation by human PARP-1. Science. 336, 728‒732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Singatulina A.S., Hamon L., Sukhanova M.V., Desforges B., Joshi V., Bouhss A., Lavrik O.I., Pastre D. 2019. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 27, 1809‒1821.e5.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Q., Kassab M.A., Dantzer F., Yu X. 2018. PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Nat. Commun. 9, 3233‒3246.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Steffen J.D., McCauley M.M., Pascal J.M. 2016. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Nucleic Acids Res. 44, 9771‒9783.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Langelier M.F., Pascal J.M. 2013. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr. Opin. Struct. Biol. 23, 134‒143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steffen J.D., Tholey R.M., Langelier M-F., Planck J.L., Schiewer M.J., Lal S., Bildzukewicz N.A., Yeo C.J., Knudsen K.E., Brody J.R., Pascal J.M. 2014. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer. Cancer Res. 74, 31–37.

    Article  CAS  PubMed  Google Scholar 

  38. Dawicki-McKenna J.M., Langelier M.F., DeNizio J.E., Riccio A.A., Cao C.D., Karch K.R., McCauley M., Steffen J.D., Black B.E., Pascal J.M. 2015. PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol. Cell. 60, 755‒768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thomas C., Ji Y., Wu C., Datz H., Boyle C., MacLeod B., Patel S., Ampofo M., Currie M., Harbin J., Pechenkina K., Lodhi N., Johnson S.J., Tulin A.V. 2019. Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proc. Natl. Acad. Sci. U. S. A. 116, 9941‒9946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mortusewicz O., Ame J.C., Schreiber V., Leonhardt H. 2007. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res. 35, 7665‒7675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rudolph J., Mahadevan J., Dyer P., Luger K. 2018. P-oly(ADP-ribose) polymerase 1 searches DNA via a 'monkey bar' mechanism. Elife. 7, e37818‒e37841.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mirny L., Slutsky M., Wunderlich Z., Tafvizi A., Leith J., Kosmrlj A. 2009. How a protein searches for its site on DNA: The mechanism of facilitated diffusion. J. Phys. A: Math. Theor. 42, 434013‒434023.

    Article  Google Scholar 

  43. Rudolph J., Mahadevan J., Luger K. 2020. Probing the conformational changes associated with DNA binding to PARP1. Biochemistry. 59, 2003‒2011.

    Article  CAS  PubMed  Google Scholar 

  44. Kotova E., Lodhi N., Jarnik M., Pinnola A.D., Ji Y., Tulin A.V. 2011. Drosophila histone H2A variant (H2Av) controls poly(ADP-ribose) polymerase 1 (PARP1) activation in chromatin. Proc. Natl. Acad. Sci. U. S. A. 108, 6205‒6210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rudolph J., Muthurajan U.M., Palacio M., Mahadevan J., Roberts G., Erbse A.H., Dyer P.N., Luger K. 2021. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol. Cell. 81, 4994‒5006 e5.

  46. Kotova E.Y., Hsieh F.K., Chang H.W., Maluchenko N.V., Langelier M.F., Pascal J.M., Luse D.S., Feofanov A.V., Studitsky V.M. 2022. Human PARP1 facilitates transcription through a nucleosome and histone displacement by Pol II in vitro. Int. J. Mol. Sci. 23, 7107‒7122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maluchenko N.V., Nilov D.K., Pushkarev S.V., Kotova E.Y., Gerasimova N.S., Kirpichnikov M.P., Langelier M.F., Pascal J.M., Akhtar M.S., Feofanov A.V., Studitsky V.M. 2021. Mechanisms of nucleosome reorganization by PARP1. Int. J. Mol. Sci. 22, 12127‒12144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li X., Erden O., Li L., Ye Q., Wilson A., Du W. 2014. Binding to WGR domain by salidroside activates PARP1 and protects hematopoietic stem cells from oxidative stress. Antioxid. Redox Signal. 20, 1853‒1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Obaji E., Haikarainen T., Lehtio L. 2016. Characterization of the DNA dependent activation of human ARTD2/PARP2. Sci. Rep. 6, 34487‒34500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Riccio A.A., Cingolani G., Pascal J.M. 2016. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Res. 44, 1691‒1702.

    Article  PubMed  Google Scholar 

  51. Obaji E., Haikarainen T., Lehtio L. 2018. Structural basis for DNA break recognition by ARTD2/PARP2. Nucleic Acids Res. 46, 12154‒12165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaullier G., Roberts G., Muthurajan U.M., Bowerman S., Rudolph J., Mahadevan J., Jha A., Rae P.S., Luger K. 2020. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. PLoS One. 15, e0240932‒e0240961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bilokapic S., Suskiewicz M.J., Ahel I., Halic M. 2020. Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Nature. 585, 609‒613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin X., Jiang W., Rudolph J., Lee B.J., Luger K., Zha S. 2022. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Nucleic Acids Res. 50, 3958‒3973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shao Z., Lee B.J., Rouleau-Turcotte E., Langelier M.F., Lin X., Estes V.M., Pascal J.M., Zha S. 2020. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res. 48, 9694‒9709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Galindo-Campos M.A., Lutfi N., Bonnin S., Martinez C., Velasco-Hernandez T., Garcia-Hernandez V., Martin-Caballero J., Ampurdanes C., Gimeno R., Colomo L., Roue G., Guilbaud G., Dantzer F., Navarro P., M-urga M., Fernandez-Capetillo O., Bigas A., Menendez P., Sale J.E., Yelamos J. 2022. Distinct roles for PARP-1 and PARP-2 in c-Myc-driven B-cell lymphoma in mice. Blood. 139, 228‒239.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation under Agreement no. 075-15-2021-1354 on October 7, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Maluchenko.

Ethics declarations

This article does not contain any studies on the use of humans and animals as objects of research.

Conflict of interest. The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Levina

Abbreviations: ART, ADP-ribozyltransferase domain; BRCT (BRCA1 C terminus), PARP1 domain that contains C-terminal motif, BRCA1 (breast cancer 1); CAT, catalytic domain; CTR, C-terminal region; FRAP, fluorescence recovery after photobleaching; HD, helical domain; HPF1, histone PARylation factor 1; NTR, N-terminal region; PAR, poly(ADP-ribose); PARP1, poly(ADP-ribose) polymerase 1; PARP2, poly(ADP-ribose) polymerase 2; SSBs and DSBs, single-strand breaks, double-strand breaks; WGR, tryptophan-glycine-arginine-rich domain (Trp (W), Gly (G), and Arg (R)); XRCC1 (X-ray repair cross-complementing 1), protein1 from complementation group, repair factor; Zn1, Zn2, and Zn3, zinc fingers 1, 2, and 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maluchenko, N.V., Korovina, A.N., Saulina, A.A. et al. The Role of the WGR Domain in the Functions of PARP1 and PARP2. Mol Biol 57, 802–810 (2023). https://doi.org/10.1134/S0026893323050114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323050114

Keywords:

Navigation