Skip to main content
Log in

Drosophila melanogaster Lifespan Is Regulated by nejire Gene Expression in Peripheral Tissues and Nervous System

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Histone acetyltransferases of the CBP/p300 family are involved in transcriptional regulation and many biological processes (cell proliferation and differentiation, development, and regulation of the stress response and metabolism). Overexpression and knockdown of the nejire (nej) gene (codes for an ortholog of human CBP/p300 proteins) in various tissues (the fat body, intestine, and nervous system) and at various stages of the life cycle (throughout all developmental stages or in adulthood only) were tested for effect on lifespan in the fruit fly Drosophila melanogaster. The activation of nej exerted a positive or a negative effect on the lifespan, depending on the induction mode and the sex. A 6–15% greater lifespan was observed in females with conditional overexpression of nej in the intestine and constitutive overexpression of nej in the nervous system. A decrease (to 44%) or lack of significant changes in lifespan was detected in all other cases. observed. In addition, stress response genes (Sod1, Gadd45, Hsp27, Hsp68, and Hif1) were regulated by nej activation. nej knockdown caused a pronounced negative effect on the D. melanogaster lifespan in most variants of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Proshkina E.N., Solovev I.A., Shaposhnikov M.V., Moskalev A.A. 2020. Key molecular mechanisms of aging, biomarkers, and potential interventions. Mol. Biol. (Moscow). 54 (6), 777–811.

    Article  CAS  Google Scholar 

  2. Bradshaw P.C. 2021. Acetyl-CoA metabolism and histone acetylation in the regulation of aging and lifespan. Antioxidants (Basel). 10, 572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos-Rosa H., Valls E., Kouzarides T., Martinez-Balbas M. 2003. Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res. 31, 4285–4292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dutto I., Scalera C., Prosperi E. 2018. CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol. Life Sci. 75, 1325–1338.

    Article  CAS  PubMed  Google Scholar 

  5. Xu Y., Wan W. 2023. Acetylation in the regulation of autophagy. Autophagy. 19, 379–387.

    Article  CAS  PubMed  Google Scholar 

  6. Goodman R.H., Smolik S. 2000. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577.

    Article  CAS  PubMed  Google Scholar 

  7. Xue Y., Wen H., Shi X. 2018. CBP/p300: Intramolecular and intermolecular regulations. Front. Biol. 13, 168–179.

    Article  CAS  Google Scholar 

  8. Sen P., Lan Y., Li C.Y., Sidoli S., Donahue G., Dou Z., Frederick B., Chen Q., Luense L.J., Garcia B.A., Dang W., Johnson F.B., Adams P.D., Schultz D.C., Berger S.L. 2019. Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol. Cell. 73, 684–698 e688.

  9. Vaziri H., West M.D., Allsopp R.C., Davison T.S., Wu Y.S., Arrowsmith C.H., Poirier G.G., Benchimol S. 1997. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J. 16, 6018–6033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang W.S., Kuo Y.H., Kuo H.C., Hsieh M.C., Huang C.Y., Lee K.C., Lee K.F., Shen C.H., Tung S.Y., Teng C.C. 2017. CIL-102-Induced cell cycle arrest and apoptosis in colorectal cancer cells via upregulation of p21 and GADD45. PLoS One. 12, e0168989.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li T.Y., Sleiman M.B., Li H., Gao A.W., Mottis A., Bachmann A.M., El Alam G., Li X., Goeminne L.J.E., Schoonjans K., Auwerx J. 2021. The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat. Aging. 1, 165–178.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Madeo F., Carmona-Gutierrez D., Kepp O., Kroemer G. 2018. Spermidine delays aging in humans. Aging (Albany NY). 10, 2209–2211.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marek K.W., Ng N., Fetter R., Smolik S., Goodman C.S., Davis G.W. 2000. A genetic analysis of synaptic development: Pre- and postsynaptic dCBP control transmitter release at the Drosophila NMJ. Neuron. 25, 537–547.

    Article  CAS  PubMed  Google Scholar 

  14. Smolik S., Jones K. 2007. Drosophila dCBP is involved in establishing the DNA replication checkpoint. Mol. Cell. Biol. 27, 135–146.

    Article  CAS  PubMed  Google Scholar 

  15. Taylor J.P., Taye A.A., Campbell C., Kazemi-Esfarjani P., Fischbeck K.H., Min K.T. 2003. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev. 17, 1463–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tseng A.S., Hariharan I.K. 2002. An overexpression screen in Drosophila for genes that restrict growth or cell-cycle progression in the developing eye. Genetics. 162, 229–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Osterwalder T., Yoon K.S., White B.H., Keshishian H. 2001. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. U. S. A. 98, 12596–12601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duffy J.B. 2002. GAL4 system in Drosophila: A fly geneticist’s Swiss army knife. Genesis. 34, 1–15.

    Article  CAS  PubMed  Google Scholar 

  19. Landis G.N., Salomon M.P., Keroles D., Brookes N., Sekimura T., Tower J. 2015. The progesterone antagonist mifepristone/RU486 blocks the negative effect on life span caused by mating in female Drosophila. Aging (Albany NY). 7, 53–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xia B., de Belle J.S. 2016. Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila. Aging (Albany NY). 8, 1115–1134.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fleming T.R., O’Fallon J.R., O’Brien P.C., Harrington D.P. 1980. Modified Kolmogorov–Smirnov test procedures with application to arbitrarily right-censored data. Biometrics. 36, 607–625.

    Article  Google Scholar 

  22. Mantel N. 1966. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170.

    CAS  PubMed  Google Scholar 

  23. Martinez R.L.M.C., Naranjo J.D. 2012. A pretest for choosing between logrank and wilcoxon tests in the two-sample problem. Metron. 68, 111–125.

    Article  Google Scholar 

  24. Wang C., Li Q., Redden D.T., Weindruch R., Allison D.B. 2004. Statistical methods for testing effects on “maximum lifespan.” Mech. Ageing Dev. 125, 629–632.

    Article  PubMed  Google Scholar 

  25. Han S.K., Lee D., Lee H., Kim D., Son H.G., Yang J.S., Lee S.V., Kim S. 2016. OASIS 2: Online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. 7, 56147–56152.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kruskal W.H., Wallis W.A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621.

    Article  Google Scholar 

  27. Ganner A., Gerber J., Ziegler A.K., Li Y., Kandzia J., Matulenski T., Kreis S., Breves G., Klein M., Walz G., Neumann-Haefelin E. 2019. CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp. Gerontol. 126, 110690.

    Article  CAS  PubMed  Google Scholar 

  28. Wang D., Kon N., Lasso G., Jiang L., Leng W., Zhu W.G., Qin J., Honig B., Gu W. 2016. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 538, 118–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boija A., Mahat D.B., Zare A., Holmqvist P.H., Philip P., Meyers D.J., Cole P.A., Lis J.T., Stenberg P., Mannervik M. 2017. CBP regulates recruitment and release of promoter-proximal RNA polymerase II. Mol. Cell. 68, 491–503.e495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y., Zhong H., Wu M., Tan B., Zhao L., Yi Q., Xu X., Pan H., Bi Y., Yang K. 2019. Decline of p300 contributes to cell senescence and growth inhibition of hUC-MSCs through p53/p21 signaling pathway. Biochem. Biophys. Res. Commun. 515, 24–30.

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh R., Kaypee S., Shasmal M., Kundu T.K., Roy S., Sengupta J. 2019. Tumor suppressor p53-mediated structural reorganization of the transcriptional coactivator p300. Biochemistry. 58, 3434–3443.

    Article  CAS  PubMed  Google Scholar 

  32. Xu X., Zhang C., Xu H., Wu L., Hu M., Song L. 2020. Autophagic feedback-mediated degradation of IKKα requires CHK1- and p300/CBP-dependent acetylation of p53. J. Cell Sci. 133, jcs246868.

    Article  CAS  PubMed  Google Scholar 

  33. Wondisford A.R., Xiong L., Chang E., Meng S., Meyers D.J., Li M., Cole P.A., He L. 2014. Control of Foxo1 gene expression by co-activator P300. J. Biol. Chem. 289, 4326–4333.

    Article  CAS  PubMed  Google Scholar 

  34. Wu J., Jiang Z., Zhang H., Liang W., Huang W., Zhang H., Li Y., Wang Z., Wang J., Jia Y., Liu B., Wu H. 2018. Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2. Free Radical Biol. Med. 124, 454–465.

    Article  CAS  Google Scholar 

  35. Xu D., Zalmas L.P., La Thangue N.B. 2008. A transcription cofactor required for the heat-shock response. EMBO Rep. 9, 662–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruas J.L., Berchner-Pfannschmidt U., Malik S., Gradin K., Fandrey J., Roeder R.G., Pereira T., Poellinger L. 2010. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J. Biol. Chem. 285, 2601–2609.

    Article  CAS  PubMed  Google Scholar 

  37. Barrett L.N., Westerheide S.D. 2022. The CBP-1/p300 lysine acetyltransferase regulates the heat shock response in C. elegans. Front. Aging. 3, 861761.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hunt G., Boija A., Mannervik M. 2022. p300/CBP sustains Polycomb silencing by non-enzymatic functions. Mol. Cell. 82, 3580–3597 e3589.

  39. Siebold A.P., Banerjee R., Tie F., Kiss D.L., Moskowitz J., Harte P.J. 2010. Polycomb repressive complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc. Natl. Acad. Sci. U. S. A. 107, 169–174.

    Article  CAS  PubMed  Google Scholar 

  40. Dasari V., Srivastava S., Khan S., Mishra R.K. 2018. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology. 19, 33–45.

    Article  CAS  PubMed  Google Scholar 

  41. Sharma S., Poetz F., Bruer M., Ly-Hartig T.B., Schott J., Séraphin B., Stoecklin G. 2016. Acetylation-dependent control of global Poly(A) RNA degradation by CBP/p300 and HDAC1/2. Mol. Cell. 63, 927–938.

    Article  CAS  PubMed  Google Scholar 

  42. Ansari M.S.Z., Stagni V., Iuzzolino A., Rotili D., Mai A., Del Bufalo D., Lavia P., Degrassi F., Trisciuoglio D. 2023. Pharmacological targeting of CBP/p300 drives a redox/autophagy axis leading to senescence-induced growth arrest in non-small cell lung cancer cells. Cancer Gene Ther. 30, 124–136.

    Article  CAS  PubMed  Google Scholar 

  43. Solovev I., Shaposhnikov M., Kudryavtseva A., Moskalev A. 2018. Drosophila melanogaster as a model for studying the epigenetic basis of aging. In Epigenetics of Aging and Longevity. 4. Moskalev A., Vaiserman A.M., Eds. Boston: Academic, pp. 293–307.

    Google Scholar 

  44. Lee I.H., Finkel T. 2009. Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284, 6322–6328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wan W., You Z., Xu Y., Zhou L., Guan Z., Peng C., Wong C.C.L., Su H., Zhou T., Xia H., Liu W. 2017. mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis. Mol. Cell. 68, 323–335.e326.

    Article  CAS  PubMed  Google Scholar 

  46. Hao Y., Ren Z., Yu L., Zhu G., Zhang P., Zhu J., Cao S. 2022. p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis. Aging Cell. 21, e13677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen X., Li Y., Wang C., Tang Y., Mok S.A., Tsai R.M., Rojas J.C., Karydas A., Miller B.L., Boxer A.L., Gestwicki J.E., Arkin M., Cuervo A.M., Gan L. 2020. Promoting tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy. Mol. Neurodegener. 15, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Auwerx J., Li T.Y. 2020. A conserved role of CBP/p300 in mitochondrial stress response and longevity. FASEB J. 34, 1–1.

    Article  Google Scholar 

  49. Hung H.C., Maurer C., Kay S.A., Weber F. 2007. Circadian transcription depends on limiting amounts of the transcription co-activator nejire/CBP. J. Biol. Chem. 282, 31349–31357.

    Article  CAS  PubMed  Google Scholar 

  50. Lakshmanan M.D., Shaheer K. 2020. Endocrine disrupting chemicals may deregulate DNA repair through estrogen receptor mediated seizing of CBP/p300 acetylase. J. Endocrinol. Invest. 43, 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  51. Tezil T., Chamoli M., Ng C.P., Simon R.P., Butler V.J., Jung M., Andersen J., Kao A.W., Verdin E. 2019. Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy. NPJ Aging Mech. Dis. 5, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rao X., Tang P., Li Y., Fu G., Chen S., Xu X., Zhou Y., Li X., Zhang L., Mo S., Cai S., Peng J., Zhang Z., Gao J., Hua G. 2021. CBP/P300 Inhibitors mitigate radiation-induced GI syndrome by promoting intestinal stem cell-mediated crypt regeneration. Int. J. Radiat. Oncol. Biol. Phys. 110, 1210–1221.

    Article  PubMed  Google Scholar 

  53. McCarroll S.A., Murphy C.T., Zou S., Pletcher S.D., Chin C.S., Jan Y.N., Kenyon C., Bargmann C.I., Li H. 2004. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat. Genet. 36, 197–204.

    Article  CAS  PubMed  Google Scholar 

  54. Landis G.N., Hilsabeck T.A.U., Bell H.S., Ronnen-Oron T., Wang L., Doherty D.V., Tejawinata F.I., Erickson K., Vu W., Promislow D.E.L., Kapahi P., Tower J. 2021. Mifepristone increases life span of virgin female Drosophila on regular and high-fat diet without reducing food intake. Front. Genet. 12, 751647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kirfel P., Vilcinskas A., Skaljac M. 2020. Lysine acetyltransferase p300/CBP plays an important role in reproduction, embryogenesis and longevity of the pea aphid Acyrthosiphon pisum. Insects. 11, 265.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cai H., Dhondt I., Vandemeulebroucke L., Vlaeminck C., Rasulova M., Braeckman B.P. 2019. CBP-1 acts in GABAergic neurons to double life span in axenically cultured Caenorhabditis elegans. J. Gerontol. A Bio-l. Sci. Med. Sci. 74, 1198–1205.

    Article  CAS  Google Scholar 

  57. Bedford D.C., Kasper L.H., Wang R., Chang Y., Green D.R., Brindle P.K. 2011. Disrupting the CH1 domain structure in the acetyltransferases CBP and p300 results in lean mice with increased metabolic control. Cell Metab. 14, 219–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao W., Wang T., Huang F. 2018. p300/CBP as a key nutritional sensor for hepatic energy homeostasis and liver fibrosis. Biomed. Res. Int. 2018, 8168791.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lai K.K.Y., Hu X., Chosa K., Nguyen C., Lin D.P., Lai K.K., Kato N., Higuchi Y., Highlander S.K., Melendez E., Eriguchi Y., Fueger P.T., Ouellette A.J., Chimge N.O., Ono M., Kahn M. 2021. P300 serine 89: A critical signaling integrator and its effects on intestinal homeostasis and repair. Cancers (Basel). 13 (6), 1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lipinski M., Del Blanco B., Barco A. 2019. CBP/p300 in brain development and plasticity: Disentangling the KAT’s cradle. Curr. Opin. Neurobiol. 59, 1–8.

    Article  CAS  PubMed  Google Scholar 

  61. Lin W.H., Baines R.A. 2019. Myocyte enhancer factor-2 and p300 interact to regulate the expression of homeostatic regulator Pumilio in Drosophila. Eur. J. Neurosci. 50, 1727–1740.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Caccamo A., Maldonado M.A., Bokov A.F., Majumder S., Oddo S. 2010. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 107, 22687–22692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song H., Moon M., Choe H.K., Han D.H., Jang C., Kim A., Cho S., Kim K., Mook-Jung I. 2015. Aβ-Induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease. Mol. Neurodegener. 10, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Iyer N.G., Özdag H., Caldas C. 2004. p300/CBP and cancer. Oncogene. 23, 4225–4231.

    Article  CAS  PubMed  Google Scholar 

  65. Wang F., Marshall C.B., Ikura M. 2013. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: Structural and functional versatility in target recognition. Cell. Mol. Life Sci. 70, 3989–4008.

    Article  CAS  PubMed  Google Scholar 

  66. Waddell A.R., Huang H., Liao D. 2021. CBP/p300: Critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers. Cancers (Basel). 13 (12), 2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen Q., Yang B., Liu X., Zhang X.D., Zhang L., Liu T. 2022. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 12, 4935–4948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ghosh A.K. 2020. p300 in cardiac development and accelerated cardiac aging. Aging Dis. 11, 916–926.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lazar A.G., Vlad M.L., Manea A., Simionescu M., Manea S.A. 2021. Activated histone acetyltransferase p300/CBP-related signalling pathways mediate up-regulation of NADPH oxidase, inflammation, and fibrosis in diabetic kidney. Antioxidants (Basel). 10, 1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xiong Y., Zhang M., Li Y. 2020. Recent advances in the development of CBP/p300 bromodomain inhibitors. Curr. Med. Chem. 27, 5583–5598.

    Article  CAS  PubMed  Google Scholar 

  71. He Z.X., Wei B.F., Zhang X., Gong Y.P., Ma L.Y., Zhao W. 2021. Current development of CBP/p300 inhibitors in the last decade. Eur. J. Med. Chem. 209, 112861.

    Article  CAS  PubMed  Google Scholar 

  72. Valor L.M., Viosca J., Lopez-Atalaya J.P., Barco A. 2013. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr. Pharm. Des. 19, 5051–5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh A.K., Neo S.H., Liwang C., Pang K.K.L., Leng J.C.K., Sinha S.H., Shetty M.S., Vasudevan M., Rao V.J., Joshi I., Eswaramoorthy M., Pavon M.V., Sheila A.R., Navakkode S., Kundu T.K., Sajikumar S. 2022. Glucose derived carbon nanosphere (CSP) conjugated TTK21, an activator of the histone acetyltransferases CBP/p300, ameliorates amyloid-beta 1–42 induced deficits in plasticity and associativity in hippocampal CA1 pyramidal neurons. Aging Cell. 21, e13675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to staff of the Institute of Biology (Komi Research Center, Ural Branch, Russian Academy of Sciences) for providing a collection of Drosophila laboratory strains.

Funding

The study was supported by the state agreement with the Institute of Biology (project no. 122040600022-1, “Genetic and Functional Studies of the Effects of Geroprotective Interventions in Drosophila melanogaster Models).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Moskalev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Tkacheva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval, L.A., Proshkina, E.N., Zemskaya, N.V. et al. Drosophila melanogaster Lifespan Is Regulated by nejire Gene Expression in Peripheral Tissues and Nervous System. Mol Biol 57, 848–866 (2023). https://doi.org/10.1134/S0026893323050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323050060

Keywords:

Navigation