Skip to main content
Log in

Digital PCR as a Highly Sensitive Diagnostic Tool: A Review

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Digital PCR (dPCR) is a nucleic acid quantification method that is widely used in genetic analysis. One of the most significant advantages of dPCR over other methods is the possibility of absolute quantitative determination of genetic material without construction of calibration curves, which allows one to detect even single molecules of nucleic acids, and, hence, provides early diagnosis of diseases. One specific characteristic of dPCR is the detection of the analyzed biological object in each microreaction, followed by the presentation of the analysis results in a binary system, thereby giving the method its name. The key aspects of developing the dPCR method, i.e., from the first devices based on microfluidic chip technology to modern systems capable of measuring a target at a concentration of up to 1 in 100 000 copies are shown in the current work. We analyzed the data on the detection of various pathogens using dPCR, as well as summarizing various study results demonstrating the innovativeness of this method. Both the possibilities of multiplex dPCR analysis and its potential in clinical practice are presented. This review also addresses the issue of the role of dPCR in the development of noninvasive methods for analysis of oncological diseases. Possible ways of developing dPCR technology were emphasized, including its use as a “point-of-care” system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lei S. 2021. Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int. J. Biol. Macromol. 10, 750‒759.

    Article  Google Scholar 

  2. Vynck M., Trypsteen W., Thas O., Vandekerckhove L., De Spiegelaere W. 2016. The future of digital polymerase chain reaction in virology. Mol. Diagn. Ther. 20, 437–447.

    Article  CAS  PubMed  Google Scholar 

  3. Huggett J.F., Cowen S., Foy C.A. 2015. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin. Chem. 61, 79–88.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu X., Liu P., Lu L., Zhong H., Xu M., Jia R., Su L., Cao L., Sun Y., Guo M., Sun J., Xu J. 2022. Development of a multiplex droplet digital PCR assay for detection of enterovirus, parechovirus, herpes simplex virus 1 and 2 simultaneously for diagnosis of viral CNS infections. Virol. J. 19, 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leong N.K.C., Chu D.K.W., Chu J.T.S., Tam Y.H., Ip D.K.M., Cowling B.J., Poon L.L.M. 2020. A six-plex droplet digital RT-PCR assay for seasonal influenza virus typing, subtyping, and lineage determination. Influenza Other Respir. Viruses. 14, 720–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Whale A.S., Huggett J.F., Tzonev S. 2016. Fundamentals of multiplexing with digital PCR. Biomol. Detect. Quantif. 10, 15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. The dMIQE Group, Huggett J.F. 2020. The digital MIQE guidelines update: Minimum information for publication of quantitative digital PCR experiments for 2020. Clin. Chem. 66, 1012–1029.

  8. Mao X., Liu C., Tong H., Chen Y., Liu K. 2019. Principles of digital PCR and its applications in current obstetrical and gynecological diseases. Am. J. Transl. Res. 11, 7209–7222.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen B. 2021. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases. Clin. Chim. Acta. 517, 156‒161.

    Article  CAS  PubMed  Google Scholar 

  10. Basu A.S. 2017. Digital assays part I: Partitioning statistics and digital PCR. SLAS Technol. 22, 369–386.

    Article  PubMed  Google Scholar 

  11. Pinheiro L.B., Coleman V.A., Hindson C.M., Herrmann J., Hindson B.J., Bhat S., Emslie K.R. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011.

    Article  CAS  PubMed  Google Scholar 

  12. Wang K., Li B., Guo Y., Wu Y., Li Y., Wu W. 2022. An integrated digital PCR system with high universality and low cost for nucleic acid detection. Front. Bioeng. Biotechnol. 10, 947895.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hall Sedlak R., Jerome K.R. 2014. The potential advantages of digital PCR for clinical virology diagnostics. Expert. Rev. Mol. Diagn. 14, 501–507.

    Article  CAS  PubMed  Google Scholar 

  14. Tang L., Sun Y., Buelow D., Gu Z., Caliendo A.M., Pounds S., Hayden R.T. 2016. Quantitative assessment of commutability for clinical viral load testing using a digital PCR-based reference standard. J. Clin. Microbiol. 54, 1616–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sedlak R.H., Nguyen T., Palileo I., Jerome K.R., Kuypers J. 2017. Superiority of digital reverse transcription-PCR (RT-PCR) over real-time RT-PCR for quantitation of highly divergent human rhinoviruses. J. Clin. Microbiol. 55, 442–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sedlak R.H., Jerome K.R. 2013. Viral diagnostics in the era of digital polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 75, 1–4.

    Article  CAS  PubMed  Google Scholar 

  17. Hudecova I. 2015. Digital PCR analysis of circulating nucleic acids. Clin. Biochem. 48, 948–956.

    Article  CAS  PubMed  Google Scholar 

  18. Sanders R., Mason D.J., Foy C.A., Huggett J.F. 2013. Evaluation of digital PCR for absolute RNA quantification. Anal. Chem. 8, e75296.

    CAS  Google Scholar 

  19. Hayden R.T., Gu Z., Sam S.S., Sun Y., Tang L., Pounds S., Caliendo A.M. 2016. Comparative performance of reagents and platforms for quantitation of c-ytomegalovirus DNA by digital PCR. J. Clin. Microbiol. 54, 2602–2608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vogelstein B., Kinzler K.W. 1999. Digital PCR. Proc. Natl. Acad. Sci. U. S. A. 96, 9236–9241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  22. Morley A.A. 2014. Digital PCR: A brief history. Biomol. Detect. Quantif. 1, 1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Simmonds P., Balfe P., Peutherer J.F., Ludlam C.A., Bishop J.O., Brown A.J. 1990. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J. Virol. 64, 864–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sykes P.J., Neoh S.H., Brisco M.J., Hughes E., Condon J., Morley A.A. 1992. Quantitation of targets for PCR by use of limiting dilution. BioTechniques. 13, 444–449.

    CAS  PubMed  Google Scholar 

  25. Sanders R., Huggett J.F., Bushell C.A., Cowen S., Scott D.J., Foy C.A. 2011. Evaluation of digital PCR for absolute DNA quantification. Anal. Chem. 83, 6474–6484.

    Article  CAS  PubMed  Google Scholar 

  26. Qin J., Jones R.C., Ramakrishnan R. 2008. Studying copy number variations using a nanofluidic platform. Nucleic Acids Res. 36, e116.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pekin D., Skhiri Y., Baret J.-C., Corre D.L., Mazutis L., Salem C.B., Millot F., Harrak A.E., Hutchison J.B., Larson J.W., Link D.R., Laurent-Puig P., Griffiths A.D., Taly V. 2011. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab. Chip. 11, 2156–2166.

    Article  CAS  PubMed  Google Scholar 

  28. Tan L.L., Loganathan N., Agarwalla S., Yang C., Yuan W., Zeng J., Wu R., Wang W., Duraiswamy S. 2022. Current commercial dPCR platforms: Technology and market review. Crit. Rev. Biotechnol. 1–32.

  29. Garzarelli V., Chiriacò M.S., Cereda M., Autuori I., Ferrara F. 2022. Miniaturized real-time PCR systems for SARS-CoV-2 detection at the Point-of-Care. Clin. Chim. Acta. 536, 104–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cassinari K., Alessandri-Gradt E., Chambon P., Charbonnier F., Gracias S., Beaussire L., Alexandre K., Sarafan-Vasseur N., Houdayer C., Etienne M., Caron F., Plantier J.C., Frebourg T. 2021. Assessment of multiplex digital droplet RT-PCR as a diagnostic tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples. Clin. Chem. 67, 736–741.

    Article  PubMed  Google Scholar 

  31. Artika I.M., Wiyatno A., Ma’roef C.N. 2020. Pathogenic viruses: Molecular detection and characterization. Infect. Genet. Evol. 81, 104215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brunetto G.S., Massoud R., Leibovitch E.C., Caruso B., Johnson K., Ohayon J., Fenton K., Cortese I., Jacobson S. 2014. Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations. J. Neurovirol. 20, 341–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White R.A., Quake S.R., Curr K. 2012. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J. Virol. Methods. 179, 45–50.

    Article  CAS  PubMed  Google Scholar 

  34. Wouters Y., Dalloyaux D., Christenhusz A., Roelofs H.M.J., Wertheim H.F., Bleeker-Rovers C.P., te Morsche R.H., Wanten G.J.A. 2020. Droplet digital polymerase chain reaction for rapid broad-spectrum detection of bloodstream infections. Microb. Biotechnol. 13, 657–668.

    Article  CAS  PubMed  Google Scholar 

  35. Mancusi A., Fulgione A., Girardi S., Di Maro O., Capuano F., Proroga Y.T.R., Cristiano D. 2022. Droplet digital PCR (ddPCR) analysis for detecting shiga-toxin-producing Escherichia coli (STEC). Appl. Sci. 12, 3654.

    Article  CAS  Google Scholar 

  36. Shao Z., Zhu J., Wei Y., Jin J., Zheng Y., Liu J., Zhang R., Sun R., Hu B. 2022. Pathogen load and species monitored by droplet digital PCR in patients with bloodstream infections: A prospective case series study. BMC Infect. Dis. 22, 771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Merino I., de la Fuente A., Domínguez-Gil M., Eiros J.M., Tedim A.P., Bermejo-Martín J.F. 2022. Digital PCR applications for the diagnosis and management of infection in critical care medicine. Crit. Care. 26, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hu B., Tao Y., Shao Z., Zheng Y., Zhang R., Yang X., Liu J., Li X., Sun R. 2021. A comparison of blood pathogen detection among droplet digital PCR, metagenomic next-generation sequencing, and blood culture in critically ill patients with suspected bloodstream infections. Front. Microbiol. 12, 641202.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kondrashin A.V., Morozova L.F., Stepanova E.V., Turbabina N.A., Maksimova M.S., Morozov E.N. 2018. On the epidemiology of Plasmodium vivax malaria: Past and present with special reference to the former USSR. Malar. J. 17, 346.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mangold K.A., Manson R.U., Koay E.S.C., Stephens L., Regner M., Thomson R.B., Peterson L.R., Kaul K.L. 2005. Real-time PCR for detection and identification of Plasmodium spp. J. Clin. Microbiol. 43, 2435–2440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koepfli C., Nguitragool W., Hofmann N.E., Robinson L.J., Ome-Kaius M., Sattabongkot J., Felger I., Mueller I. 2016. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR). Sci. Rep. 6, 39183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gentilini F., Turba M.E., Taddei F., Gritti T., Fantini M., Dirani G., Sambri V. 2021. Modelling RT-qPCR cycle-threshold using digital PCR data for implementing SARS-CoV-2 viral load studies. PLoS One. 16, e0260884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Y., Yao L., Li J., Chen L., Song Y., Cai Z., Yang C. 2020. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J. Med. Virol. 92, 903–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu J., Liu J., Zhao X., Liu C., Wang W., Wang D., Zhang C., Yu J., Jiang B., Cao H., Li L. 2019. Clinical characteristics of imported cases of COVID-19 in Jiangsu province: A multicenter descriptive study. Clin. Infect. Dis. 71, 706–712.

    Article  Google Scholar 

  45. Tahamtan A., Ardebili A. 2020. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert. Rev. Mol. Diagn. 20, 453–454.

    Article  CAS  PubMed  Google Scholar 

  46. Konka A., Lejawa M., Gaździcka J., Bochenek A., Fronczek M., Strzelczyk J.K. 2022. RT-PCR detection of SARS-CoV-2 among individuals from the upper Silesian region—analysis of 108516 tests. Diagnostics. 12, 7.

    Article  CAS  Google Scholar 

  47. Suo T., Liu X., Feng J., Guo M., Hu W., Guo D., Ullah H., Yang Y., Zhang Q., Wang X., Sajid M., Huang Z., Deng L., Chen T., Liu F., Xu K., Liu Y., Zhang Q., Liu Y., Xiong Y., Chen G., Lan K., Chen Y. 2020. ddPCR: A more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg. Microbes Infect. 9, 1259–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dong L., Zhou J., Niu C., Wang Q., Pan Y., Sheng S., Wang X., Zhang Y., Yang J., Liu M., Zhao Y., Zhang X., Zhu T., Peng T., Xie J., Gao Y., Wang D., Dai X., Fang X. 2021. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta. 224, 121726.

    Article  CAS  PubMed  Google Scholar 

  49. Telysheva E.N. 2017. Free-circulating plasma DNA: Potential applications in oncology. Vestn. RNTsRR. 17, 2.

    Google Scholar 

  50. Sarhadi V.K., Armengol G. 2022. Molecular biomarkers in cancer. Biomolecules. 12, 1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang S., Zhang K., Tan S., Xin J., Yuan Q., Xu H., Xu X., Liang Q., Christiani D.C., Wang M., Liu L., Du M. 2021. Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol. Cancer. 20, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Szilágyi M., Pös O., Márton É., Buglyó G., Soltész B., Keserű J., Penyige A., Szemes T., Nagy B. 2020. Circulating cell-free nucleic acids: Main characteristics and clinical application. Int. J. Mol. Sci. 21, 6827.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pös O., Biró O., Szemes T., Nagy B. 2018. Circulating cell-free nucleic acids: Characteristics and applications. Eur. J. Hum. Genet. 26, 937–945.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu D., Yin H., Wang Y., Cao Y., Yin J., Zhang J., Yin H., Zhao X. 2021. Development of a highly sensitive digital PCR assay to quantify long non-coding RNA MYU in urine samples which exhibited great potential as an alternative diagnostic biomarker for prostate cancer. Transl. Androl. Urol. 10, 3815–3825.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Du M., Huang C.-C., Tan W., Kohli M., Wang L. 2020. Multiplex digital PCR to detect amplifications of specific androgen receptor loci in cell-free DNA for prognosis of metastatic castration-resistant prostate cancer. Cancers. 12, E2139.

    Article  Google Scholar 

  56. Bit-Sava E.M. 2014. Hereditary characteristics of BRCA1 of 5382insC/hek2/blm-associated breast cancer. Sib. Onkol. Zh. 6, 15–18.

    Google Scholar 

  57. Mehta A., Diwan H., Gupta G., Nathany S., Agnihotri S., Dhanda S. 2022. Founder BRCA1 mutations in Nepalese population. J. Pathol. Transl. Med. 56, 212–216.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tsyganov M.M., Tarabanovskaya N.A., Deryusheva I.V., Ibragimova M.I., Kazantseva P.V., Pevzner A.M., Slonimskaya E.M., Litvyakov N.V. 2019. Response to neoadjuvant chemotherapy with inclusion of platinum drugs in a breast cancer patient with BRCA1 gene deletion in the tumor. Sib. Onkol. Zh. 18, 103–108.

    Article  Google Scholar 

  59. Kayukova E.V. 2019. Possibilities of liquid biopsy in the diagnosis and monitoring of cervical cancer. Sib. Onkol. Zh. 18, 92–101.

    Article  Google Scholar 

  60. Tewari K.S., Sill M.W., Monk B.J., Penson R.T., Moore D.H., Lankes H.A., Ramondetta L.M., Landrum L.M., Randall L.M., Oaknin A., Leitao M.M., Eisenhauer E.L., DiSilvestro P., Van Le L., Pearl M.L., Burke J.J., Salani R., Richardson D.L., Michael H.E., Kindelberger D.W., Birrer M.J. 2020. Circulating tumor cells in advanced cervical cancer: NRG oncology-gynecologic oncology group study 240 (NCT 00803062). Mol. Cancer Ther. 19, 2363–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Buleje J., Guevara-Fujita M., Acosta O., Huaman F.D.P., Danos P., Murillo A., Pinto J.A., Araujo J.M., Aguilar A., Ponce J., Vigil C., Castaneda C., Calderon G., Gomez H.L., Fujita R. 2017. Mutational analysis of BRCA1 and BRCA2 genes in Peruvian families with hereditary breast and ovarian cancer. Mol. Genet. Genomic Med. 5, 481–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weigelt B., Comino-Méndez I., de Bruijn I., Tian L., Meisel J.L., García-Murillas I., Fribbens C., Cutts R., Martelotto L.G., Ng C.K., Lim R.S., Selenica P., Piscuoglio S., Aghajanian C., Norton L., Murali R., Hyman D.M., Borsu L., Arcila M.E., Konner J., Reis-Filho J.S., Greenberg R.A., Robson M.E., Turner N.C. 2017. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin. Cancer Res. 23, 6708–6720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He H.-J., Almeida J.L., Lund S.P., Steffen C.R., Choquette S., Cole K.D. 2016. Development of NIST standard reference material 2373: Genomic DNA standards for HER2 measurements. Biomol. Detect. Quantif. 8, 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou R., Cai Y., Shen S., Sha M., Li Z., Head S.R., Wang Y. 2018. A digital PCR based assay to detect all ALK fusion species. Front. Lab. Med. 2, 49–54.

    Article  Google Scholar 

  65. Beck J., Bierau S., Balzer S., Andag R., Kanzow P., Schmitz J., Gaedcke J., Moerer O., Slotta J.E., Walson P., Kollmar O., Oellerich M., Schütz E. 2013. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin. Chem. 59, 1732–1741.

    Article  CAS  PubMed  Google Scholar 

  66. Mair R., Mouliere F. 2022. Cell-free DNA technologies for the analysis of brain cancer. Br. J. Cancer. 126, 371–378.

    Article  CAS  PubMed  Google Scholar 

  67. McEwen A.E., Leary S.E.S., Lockwood C.M. 2020. Beyond the blood: CSF-derived cfDNA for diagnosis and characterization of CNS tumors. Front. Cell Dev. Biol. 8, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bouchè V., Aldegheri G., Donofrio C.A., Fioravanti A., Roberts-Thomson S., Fox S.B., Schettini F., Generali D. 2021. BRAF signaling inhibition in glioblastoma: Which clinical perspectives? Front. Oncol. 11, 772052.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Castel D., Philippe C., Calmon R., Le Dret L., Truffaux N., Boddaert N., Pagès M., Taylor K.R., Saulnier P., Lacroix L., Mackay A., Jones C., Sainte-Rose C., Blauwblomme T., Andreiuolo F., Puget S., Grill J., Varlet P., Debily M.-A. 2015. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. (Berl.). 130, 815–827.

    Article  CAS  PubMed  Google Scholar 

  70. Zaytseva M., Usman N., Salnikova E., Sanakoeva A., Valiakhmetova A., Chervova A., Papusha L., Novichkova G., Druy A. 2022. Methodological challenges of digital PCR detection of the histone H3 K27M somatic variant in cerebrospinal fluid. Pathol. Oncol. Res. 28, 1610024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sahu R., Vishnuraj M.R., Srinivas Ch., Dadimi B., Megha G.K., Pollumahanti N., Malik S.S., Vaithiyanathan S., Rawool D.B., Barbuddhe S.B. 2021. Development and comparative evaluation of droplet digital PCR and quantitative PCR for the detection and quantification of Chlamydia psittaci. J. Microbiol. Methods. 190, 106318.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center Krasnoyarsk Science Center Siberian Branch, Russian Academy of Sciences for providing the digital PCR QIAcuity One 5plex Instrument (QIAGEN, 2021) for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Smolnikova.

Ethics declarations

Statement on the welfare of animals. This article does not contain any studies using animals as subjects.

Conflict of interest. The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylova, K.V., Kasparov, E.W., Marchenko, I.V. et al. Digital PCR as a Highly Sensitive Diagnostic Tool: A Review. Mol Biol 57, 793–801 (2023). https://doi.org/10.1134/S0026893323050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323050059

Keywords:

Navigation