Skip to main content
Log in

Analysis of the Complete Tomato Aspermy Virus Genomes Suggests Reassortment in Russian Isolates from Chrysanthemum

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Tomato aspermy virus (TAV, genus Cucumovirus from the family Bromoviridae) is one of the most common and harmful chrysanthemum viruses, causing severe flower distortion, size reduction, and color breaking. Metatranscriptome sequencing of chrysanthemum plants of the Ribonette and Golden Standard cultivars from the collection of the Nikita Botanical Garden (Yalta, Republic of Crimea) generated TAV‑related RNA reads. The complete genomes of two Russian isolates of the virus were assembled from the reads. This is the first report of full-length TAV genomes from Russia. Typically of cucumoviruses, the segmented TAV genome is represented by three single-stranded positive-sense linear RNA molecules of 3412 (RNA1), 3097 (RNA2) and 2219 (RNA3) nucleotides. Five open reading frames (ORF) have been identified that encode replicase (ORF1), RNA-dependent RNA polymerase (ORF2a), silencing suppressor protein (OFR2b), movement protein (OFR3a) and the coat protein (ORF3b). The identity of TAV genomes from the two chrysanthemum cultivars was 99.8% for all three viral RNAs; with other TAV isolates from GenBank it was 97.5–99.7% (RNA1), 93.8–99.8% (RNA2), and 89.3–99.3% (RNA3). Phylogenetic analysis showed that RNA1 and RNA3 of the Russian isolates were assigned to heterogeneous groups of TAV isolates found on various plant species in different regions of the world. At the same time, RNA2 clearly clustered with tomato isolates SKO20ST2 from Slovenia and PV-0220 from Bulgaria and, to a lesser extent, with the Iranian isolate Ker.Mah.P from petunia and the Chinese isolate Henan from chrysanthemum. The incongruence of phylogenetic trees reconstructed from different genome segments suggests pseudo-recombination (reassortment) in the Russian TAV isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Trolinger J.C., McGovern R.J., Elmer W.H., Rechcigl N.A., Shoemaker C.M. 2018. Diseases of Сhrysanthemum. In Handbook of Florists’ Crop Disease. McG-overn R.J., Elmer W.H., Eds. Springer International Publ. AG, 439−502.

    Google Scholar 

  2. Ram R., Verma N., Singh A.K., Singh L., Hallan V., Zaidi A.A. 2005. Indexing and production of virus-free chrysanthemums. Biol. Plant. 49, 149−152.

    Article  Google Scholar 

  3. Mitrofanova I.V., Zakubanskiy A.V., Mitrofanova O.V. 2018. Viruses infecting main ornamental plants: An overview. Ornam. Hortic. 24, 95−102.

    Article  Google Scholar 

  4. Hollings M. 1955. Investigation of chrysanthemum viruses. I. Aspermy flower distortion. Ann. Appl. Biol. 43, 86−102.

    Article  Google Scholar 

  5. Zakubanskiy A.V., Chirkov S.N., Mitrofanova O.V., Mitrofanova I.V. 2016. Viruses of some valuable fruit, essential oil, and ornamental crops (review). Byull. Gos. Nikitsk. Bot. Sada. 121, 7–18.

    Google Scholar 

  6. https://ictv.global/report/chapter/bromoviridae/bromoviridae/cucumovirus.

  7. Palukaitis P., Garcia-Arenal F. 2003. Cucumoviruses. Adv. Vir. Res. 62, 241–323.

    Article  CAS  Google Scholar 

  8. Maddahian M., Massumi H., Heydarnejad J., Pour A.H., Varsani A. 2017. Characterization of Iranian tomato aspermy virus isolates with a variant 2b gene sequence. Trop. Plant Pathol. 42, 475–484.

    Article  Google Scholar 

  9. Salanki K., Balazs E., Burgyan J. 1994. Nucleotide sequence and infectious in vitro transcripts of RNA3 of tomato aspermy virus pepper isolate. Virus Res. 33, 281–289.

    Article  CAS  PubMed  Google Scholar 

  10. Hollings M., Stone O.M. 1971. Tomato aspermy virus. CMI/AAB Description of Plant Viruses. 79, 1–7.

  11. Chuyan A.Kh., Krylov A.V. 1979. Properties of tomato aspermy virus from chrysanthemum and its host range in Primorye. Byull. Glavn. Bot. Sada Akad. Nauk SSSR. 114, 84–92.

    Google Scholar 

  12. Zakubanskiy A., Mitrofanova I., Smykova N., Mitrofanova O., Chirkov S. 2021. Detection and partial molecular characterization of viruses infecting chrysanthemum in Russia. Acta Hortic. 1324, 321–327.

  13. Moreno I.M., Bernal J.J., García de Blas B., Rodriguez-Cerezo E., García-Arenal F. 1997. The expression level of the 3a movement protein determines differences in severity of symptoms between two strains of tomato aspermy Сucumovirus. Mol. Plant Microbe Interact. 10, 171–179.

    Article  CAS  PubMed  Google Scholar 

  14. Chirkov S.N., Sheveleva A., Snezhkina A., Kudryavtseva A., Krasnov G., Zakubanskiy A., Mitrofanova I. 2022. Highly divergent isolates of chrysanthemum virus B and chrysanthemum virus R infecting chrysanthemum in Russia. Peer J. 10, e12607.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Raj S.K., Kumar S., Choudhari S. 2007. Identification of tomato aspermy virus as the cause of yellow mosaic and flower deformation of chrysanthemums in India. Australas. Plant Dis. Notes. 2, 1–2.

    Article  Google Scholar 

  16. Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H., Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 26, 589–595.

    Article  PubMed  PubMed Central  Google Scholar 

  19. https://arxiv.org/abs/1207.3907.

  20. https://github.com/lh3/wgsim.

  21. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Inoue S., Tamura M., Ugaki M., Suzuki M. 2018. Complete genome sequences of three tomato aspermy virus isolates in Japan. Genome Announc. 6, e00474-18.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Raj S.K., Kumar S., Choudhari S., Verma D.K. 2009. Biological and molecular characterization of three isolates of tomato aspermy virus infecting chrysanthemums in India. J. Phytopathol. 157, 117–125.

    Article  CAS  Google Scholar 

  25. Chare E., Holmes E. 2006. A phylogenetic survey of recombination frequency in plant RNA viruses. Arch. Virol. 151, 933–946.

    Article  CAS  PubMed  Google Scholar 

  26. Pita J.S., Roossink M.J. 2013. Fixation of emerging interviral recombination in cucumber mosaic virus populations. J. Virol. 87, 1264–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salanki K., Carrere I., Jacquemond M., Balazs E., Tepfer M. 1997. Biological properties of pseudorecombinant and recombinant strains created with cucumber mosaic virus and tomato aspermy virus. J. Virol. 71, 3597–3602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y., Chen J., Zhang H., Tang X., Du Z. 2007. Molecular evidence and sequence analysis of a natural reassortant between cucumber mosaic virus subgroup IA and II strains. Virus Genes. 35, 405–413.

    Article  CAS  PubMed  Google Scholar 

  29. Hu C.-C., Ghabrial S.A. 1998. Molecular evidence that strain BV-15 of peanut stunt Cucumovirus is a reassortant between subgroup I and II strains. Phytopathology. 88, 92–97.

    Article  CAS  PubMed  Google Scholar 

  30. White P.S., Morales F., Roossink M.J. 1995. Interspecific reassortment of genomic segments in the evolution of cucumoviruses. Virology. 207, 334–337.

    Article  CAS  PubMed  Google Scholar 

  31. Thompson J.R., Tepfer M. 2009. The 3'-untranslated region of cucumber mosaic virus (CMV) subgroup II RNA3 arose by interspecific recombination between CMV and tomato aspermy virus. J. Gen. Virol. 90, 2293–2298.

    Article  CAS  PubMed  Google Scholar 

  32. Jacquemond M. 2012. Cucumber mosaic virus. Adv. Vir. Res. 84, 439–504.

    Article  Google Scholar 

  33. Haack I., Karl E. 1986. Transmission of isolates of tomato aspermia (tomato aspermy virus) and cucumber mosaic virus (cucumber mosaic virus) by aphid species. Arch. Phytopathol. Plant Protect. 22, 451−458.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. N.V. Smykova and Dr. I.V. Mitrofanova for help in the survey of the chrysanthemum collection of the Nikita Botanical Garden—National Scientific Center of the Russian Academy of Sciences. High-throughput sequencing was performed using the equipment of the Genome Center of the Engelhardt Institute of Molecular Biology, Russian Academy of Sciences (http://www.eimb.ru/ ru1/ckp/ccu_ genome_c.php).

Funding

The work was supported by a grant from the Ministry of Science and Higher Education of the Russian Federation no. 075-15-2019-1670.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Chirkov.

Ethics declarations

This article does not contain studies involving humans or animals.

Conflict of interest. The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheveleva, A.A., Krasnov, G.S., Kudryavtseva, A.V. et al. Analysis of the Complete Tomato Aspermy Virus Genomes Suggests Reassortment in Russian Isolates from Chrysanthemum. Mol Biol 57, 816–824 (2023). https://doi.org/10.1134/S0026893323050151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323050151

Keywords:

Navigation