Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 9, 2023

Zur Kenntnis ternärer Oxoarsenate(III) dreiwertiger Lanthanoide: Synthese und Charakterisierung von LnAsO3- und Ln 2As4O9-Vertretern mit Ln = La und Ce sowie Ln = Pr, Nd, Sm–Gd

About ternary oxoarsenates(III) of trivalent lanthanoids: synthesis and characterization of LnAsO3 and Ln 2As4O9 representatives with Ln = La and Ce as well as Ln = Pr, Nd, Sm–Gd
  • Ralf J. C. Locke , Florian Ledderboge and Thomas Schleid EMAIL logo

Abstract

The title compounds have been prepared from the elemental lanthanoids and arsenic sesquioxide in 1:1 and 2:3 molar ratios in the presence of a cesium-halide flux at temperatures near 1000 °C generating elemental arsenic as the by-product. With the preparation of B-type La[AsO3] crystallizing in the monoclinic space group P21/c with the lattice parameters a = 904.03(8), b = 789.96(7), c = 837.49(7) pm and β = 103.354(3)°, both A- and B-type Ln[AsO3] representatives are now available for lanthanum and cerium. The crystal structure consists of two crystallographically distinct Ln 3+ cations with eight- or ninefold coordination by O2− anions. The Ln 3+ cations are arranged in layers of (Ln1)3+ and corrugated bilayers of (Ln2)3+ cations in the (100) plane. The two different As3+ cations appear in [AsO3]3− units, which differ mainly in their environment of Ln 3+ cations. The successful synthesis of the compounds Ln 2As4O9 (Ln = Pr, Nd, Eu and Gd) reported here on the one hand closes the structural gap between cerium and neodymium, and on the other hand also extends the spectrum of ternary oxoarsenates(III) of lanthanoids to gadolinium, with the neodymium compound for the first time at standard temperature. The crystals of the Ln 2As4O9 compounds are triclinic (space group: P 1 ) with lattice parameters nicely reflecting the lanthanoid contraction from a = 690.61(5), b = 768.95(6), c = 959.72(8) pm, α = 96.927(3), β = 103.812(3), γ = 104.441(3)° for Pr2As4O9 to a = 676.12(5), b = 751.58(6), c = 951.57(8) pm, α = 96.462(3), β = 103.678(3), γ = 104.409(3)° for Gd2As4O9 with two crystallographically independent lanthanoid(III) positions. The oxidic environments on these sites show the shape of square antiprisms with significant distortions, but (Ln2)3+ has a ninth oxygen contact in a capped antiprism. The linkage of the polyhedra creates layers in the ab plane, which are separated by the complex anions of arsenic. The oxoarsenate(III) units [AsO3]3− are linked by sharing oxygen corners to form both dinuclear [As2O5]4− and cyclic tetranuclear [As4O8]4− complex anions, which is why the compounds can also be represented with their structured molecular formula Ln 4[As2O5]2[As4O8]. The free electron pairs of the arsenic(III) cations point into channels, which are built up in the crystal structure along [010].


Dedicated to: Professor Michael Ruck on the occasion of his 60th birthday.



Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, E-mail:

Danksagung

Wir danken Herrn Dr. Falk Lissner (AOR, Universität Stuttgart) für die Einkristallmessungen.

  1. Forschungsethik: Entfällt.

  2. Autorenbeiträge: Die Autoren übernehmen die Verantwortung für den gesamten Inhalt dieses Manuskripts und haben die Einreichung genehmigt.

  3. Erklärung zum Interessenkonflikt: Die Autoren erklären, dass keine Interessenkonflikte in Bezug auf diesen Artikel existieren.

  4. Forschungsförderung: Keine Angaben.

  5. Datenverfügbarkeit: Entfällt.

Literatur

1. Kang, D.-H. Oxoarsenate(III/V) und Thioarsenate(III) der Selten-Erd-Metalle. Dissertation, Universität Stuttgart: Stuttgart, 2005.Search in Google Scholar

2. Kang, D.-H., Schleid, Th. Z. Anorg. Allg. Chem. 2005, 631, 1799–1802; https://doi.org/10.1002/zaac.200500209.Search in Google Scholar

3. Schmidt, M., Müller, U., Cardoso Gil, R., Milke, E., Binnewies, M. Z. Anorg. Allg. Chem. 2005, 631, 1154–1162; https://doi.org/10.1002/zaac.200400544.Search in Google Scholar

4. Brahim, A., Ftini, M. M., Amor, H. Acta Crystallogr. 2002, E58, i98–i99; https://doi.org/10.1107/s1600536802018664.Search in Google Scholar

5. Adala, N., Marzougui, B., Ben Smida, Y., Marzouki, R., Ferhi, M., Onwudiwe, D. C., Hamzaoui, A. H. J. Alloys Compd. 2022, 910, 164894; https://doi.org/10.1016/j.jallcom.2022.164894.Search in Google Scholar

6. Golbs, S., Cardoso-Gil, R., Schmidt, M. Z. Kristallogr. 2009, 224, 169–170; https://doi.org/10.1524/ncrs.2009.0076.Search in Google Scholar

7. Long, F. G., Stager, C. V. Can. J. Phys. 1977, 55, 1633–1640; https://doi.org/10.1139/p77-208.Search in Google Scholar

8. Schäfer, W. P., Will, G., Müller-Vogt, G. Acta Crystallogr. 1979, B35, 588–592; https://doi.org/10.1107/s0567740879004210.Search in Google Scholar

9. Schäfer, W. P., Will, G. J. Phys. 1971, C4, 3224–3233; https://doi.org/10.1088/0022-3719/4/18/028.Search in Google Scholar

10. Kang, D.-H., Höss, P., Schleid, Th. Acta Crystallogr. 2005, E61, i270–i272; https://doi.org/10.1107/s1600536805036457.Search in Google Scholar

11. Lohmüller, G., Schmidt, G., Deppisch, B., Gramlich, V., Scheringer, C. Acta Crystallogr. 1973, B29, 141–142; https://doi.org/10.1107/s0567740873002098.Search in Google Scholar

12. Metzger, S. J. Hochdruckmodifikationen von Oxoarsenaten(V) und -arsenaten(III) der Selten-Erd-Metalle und Lithium-Mangan-Eisen-Oxophosphat(V) als Kathodenmaterial für Lithium-Akkumulatoren. Dissertation, Universität Stuttgart: Stuttgart, 2012.Search in Google Scholar

13. Goerigk, F. C. Synthese und Charakterisierung von Seltenerdmetall-Oxidoarsenaten und -antimonaten sowie deren Anwendungsbezug. Dissertation, Universität Stuttgart: Stuttgart, 2021.Search in Google Scholar

14. Hartenbach, I., Müller, A. C., Schleid, Th. Z. Anorg. Allg. Chem. 2006, 632, 2147; https://doi.org/10.1002/zaac.200670141.Search in Google Scholar

15. Metzger, S. J., Ledderboge, F., Heymann, G., Huppertz, H., Schleid, Th. Z. Naturforsch. 2016, 71b, 439–445; https://doi.org/10.1515/znb-2015-0210.Search in Google Scholar

16. Ben Hamida, M. Oxo-Selenate(IV) und Oxo-Arsenate(III) der Selten-Erd-Metalle und ihre Derivate. Dissertation, Carl von Ossietzky Universität Oldenburg: Oldenburg, 2007.Search in Google Scholar

17. Kang, D.-H., Schleid, Th. Z. Anorg. Allg. Chem. 2006, 632, 91–96; https://doi.org/10.1002/zaac.200500333.Search in Google Scholar

18. Ben Hamida, M., Warns, C., Wickleder, M. S. Z. Naturforsch. 2005, 60b, 1219–1223; https://doi.org/10.1515/znb-2005-1201.Search in Google Scholar

19. Metzger, S. J., Heymann, G., Huppertz, H., Schleid, Th. Z. Anorg. Allg. Chem. 2012, 637, 1119–1122; https://doi.org/10.1002/zaac.201100552.Search in Google Scholar

20. Ledderboge, F., Metzger, S. J., Heymann, G., Huppertz, H., Schleid, Th. Solid State Sci. 2014, 37, 164–169; https://doi.org/10.1016/j.solidstatesciences.2014.08.005.Search in Google Scholar

21. Ledderboge, F. Synthese und Charakterisierung von Oxo- und Thioarsenaten(III/V) der Seltenerdmetalle und ihrer Derivate. Dissertation, Universität Stuttgart: Stuttgart, 2016.Search in Google Scholar

22. Herrendorf, W., Bärnighausen, H. Habitus, Program for the Optimisation of the Crystal Shape for Numerical Absorption Correction, Universities of Karlsruhe and Giessen: Karlsruhe, Giessen (Germany), 1993, 1997. In X-SHAPE (version 1.06), STOE & Cie.: Darmstadt (Germany), 1999.Search in Google Scholar

23. Sheldrick, G. M. Shelxs-97 and Shelxl-97. Programs for the Solution and Refinement of Crystal Structures from X-Ray Diffraction Data; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

24. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

Erhalten: 2023-08-18
Angenommen: 2023-09-04
Online erschienen: 2023-10-09
Erschienen im Druck: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0069/html
Scroll to top button