Skip to main content
Log in

On a Riemann–Hilbert problem for \(\Psi \)-hyperholomorphic functions in \({\mathbb R}^m\)

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to solve a kind of Riemann–Hilbert problem for \(\Psi \)-hyperholomorphic functions, which are linked with the use of non-standard orthogonal basis of the Euclidean space \({\mathbb R}^m\). We approach this problem using the language of Clifford analysis for obtaining the explicit solution of the problem in a Jordan domain \(\Omega \subset {\mathbb R}^m\). Since our study is concerned with either a smooth or fractal boundary, the data of the problem involve Lipschitz class \({\text{ Lip }}(k-1+\alpha ,\Gamma )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abreu, R., Ávila, R., Bory, J.: Boundary value problems with higher order Lipschitz boundary data for polymonogenic functions in fractal domains. Appl. Math. Comput. 269, 802–808 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abreu, R., Bory, J., Guzmán, A., Kähler, U.: On the \(\varphi \)-hyperderivative of the \(\psi \)-Cauchy-type integral in Clifford analysis. Comput. Methods Funct. Theory 17(1), 101–119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abreu, R., Bory, J., Guzmán, A., Kähler, U.: On the \(\Pi \)-operator in Clifford analysis. J. Math. Anal. Appl. 434(2), 1138–1159 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersson, L.E., Elfving, T., Golub, G.H.: Solution of biharmonic equations with application to radar imaging. J. Comput. Appl. Math. 94, 153–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balk, B.M.: On Polyanalytic Functions. Akademie Verlag, Berlin (1991)

    MATH  Google Scholar 

  6. Begehr, H., Chaudharyb, A., Kumarb, A.: Boundary value problems for bi-poly- analytic functions. Complex Variables Elliptic Equ. 55(1–3), 305–316 (2010)

    Article  MathSciNet  Google Scholar 

  7. Begehr, H., Hile, N.G.: A hierarchy of integral operators. Rocky Mt. J. Math. 27(3), 669–706 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berdyshev, A.S., Cabada, A., Turmetov, BKh.: On solvability of a boundary value problem for a nonhomogeneous biharmonic equation with a boundary operator of a fractional order, Acta Math. Sci. Ser. B Engl. Ed. 34, 1695–1706 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Bernstein, S.: On the index of Clifford algebra valued singular integral operators and the left linear Riemann problem. Complex Variables Theory Appl. 35(1), 33–64 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Bory Reyes, J., Abreu Blaya, R., Rodríguez Dagnino, R.M., Kats, B.A.: On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation. Anal. Math. Phys. 9(1), 483–496 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bory, J., De Schepper, H., Guzmán, A., Sommen, F.: Higher order Borel-Pompeiu representations in Clifford analysis. Math. Methods Appl. Sci. 39(16), 4787–4796 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brackx F., Delanghe, R., Sommen, F. Clifford analysis. In: Research Notes in Mathematics, vol. 76, Pitman (Advanced Publishing Program), Boston, 1982

  13. Cerejeiras, P., Kähler, U., Min, K.: On the Riemann boundary value problem for null solutions to iterated generalized Cauchy–Riemann operator in Clifford analysis. Results Math. 63(3–4), 1375–1394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of Fermionic observables. Inventiones Mathematicae 189(3), 515–580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fokas, A.S., Its, A.R., Kitaev, A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147(2), 395–430 (1992)

    Article  MATH  Google Scholar 

  16. Gilbert, J.E., Murray, M.A.M.: Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics, vol. 26. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  17. Gürlebeck, K., Habetha, K., Sprössig, W.: Application of Holomorphic Functions in Two and Higher Dimensions. Birkhäuser/Springer, Cham (2016)

    Book  MATH  Google Scholar 

  18. Gürlebeck, K., Habetha, K., Sprössig, W.: Holomorphic., functions in the plane and \(n\)-dimensional space. Translated from the, German Original, p. 2008. Birkhäuser Verlag, Basel (2006)

  19. Harrison, J., Norton, A.: The Gauss-Green theorem for fractal boundaries. Duke Math. J. 67(3), 575–588 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Its, A.R.: The Riemann–Hilbert problem and integrable systems. Not. Am. Math. Soc. 50(11), 1389–1400 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Jinyuan, D., Yufeng, W.: On Riemann boundary value problems of polyanalytic functions and metaanalytic functions on the closed curves. Complex Var. 50(7–11), 521–533 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Lai, M.C., Liu, H.C.: Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows. Appl. Math. Comput. 164, 679–695 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le, J., Jinyuan, D.: Riemann boundary value problems for some k-regular functions in Clifford analysis. Acta Math. Sci. Ser. B Engl. Ed. 32(5), 2029–2049 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. LeLongfei, G., Zunwei, F.: Riemann boundary value problem for H-2-monogenic function in Hermitian Clifford analysis. Bound. Value Probl. 2014, 81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Mao, J.-F.: A Koch-like sided fractal bow-tie dipole antenna. IEEE Trans. Antennas Propag. 60(5), 2242–2251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. McLaughlin, K., Miller, P.: The d-bar steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights. In: IMRP, p. 1–77 (2006)

  27. Mushelisvili, N.I.: Singular Integral Equations. Nauka, M. (1968). (English transl. of 1st ed., Noodhoff, Groningen, (1953))

  28. Muskhelishvili, N.I.: Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Dover Publications Inc., New York, Translated from the second (1946) Russian edition and with a preface by J. R. M. Radok, Corrected reprint of the 1953 English translation (1992)

  29. Nono, K., Inenaga, Y.: On the Clifford linearization of Laplacian. J. Indian Inst. Sci. 67(5–6), 203–208 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Shapiro, M.V.: On the conjugate harmonic functions of M. Riesz-E. Stein-G. Weiss, In: Stancho D., et al. (Eds.), Topics in Complex Analysis, Differential Geometry and Mathematical Physics, Third International Workshop on Complex Structures and Vector Fields, St. Konstantin, Bulgaria, August 23–29, World Scientific, Singapore, 1997, pp. 8–32 (1996)

  31. Stein, E.: Singular integrals and differentiability properties of functions. In: Princeton Mathematical Series, No. 30, Princeton University Press: Princeton (1970)

  32. Vekua, I.N.: Generalized Analytic Functions. Nauka, Moscow (1959)

    MATH  Google Scholar 

  33. Vladimir, R.: On Hilbert and Riemann problems for generalized analytic functions and applications. Anal. Math. Phys. 11(1), 18 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Z., Gürlebeck, K.: Some Riemann boundary value problems in Clifford analysis (I). Complex Var. Elliptic Equ. 58(7), 991–1003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou-Zheng, K., Tie-Cheng, X., Wen-Xiu, M.: Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrödinger equation. Anal. Math. Phys. 11(1), 13 (2021)

    MATH  Google Scholar 

Download references

Funding

José Luis Serrano Ricardo gratefully acknowledges the financial support of the Postgraduate Study Fellowship of the Consejo Nacional de Ciencia y Tecnología (CONACYT) (grant number 1042069).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and contributed equally to the final manuscript.

Corresponding author

Correspondence to Ricardo Abreu Blaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricardo, J.L.S., Blaya, R.A. & Ortiz, J.S. On a Riemann–Hilbert problem for \(\Psi \)-hyperholomorphic functions in \({\mathbb R}^m\). Anal.Math.Phys. 13, 84 (2023). https://doi.org/10.1007/s13324-023-00847-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-023-00847-1

Keywords

Mathematics Subject Classification

Navigation