Skip to main content
Log in

Dual roles of UPRer and UPRmt in neurodegenerative diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The unfolded protein response (UPR) is a cellular stress response mechanism induced by the accumulation of unfolded or misfolded proteins. Within the endoplasmic reticulum and mitochondria, a dynamic balance exists between protein folding mechanisms and unfolded protein levels under normal conditions. Disruption of this balance or an accumulation of unfolded proteins in these organelles can result in stress responses and UPR. The UPR restores organelle homeostasis and promotes cell survival by increasing the expression of chaperone proteins, regulating protein quality control systems, and enhancing the protein degradation pathway. However, prolonged or abnormal UPR can also have negative effects, including cell death. Therefore, many diseases, especially neurodegenerative diseases, are associated with UPR dysfunction. Neurodegenerative diseases are characterized by misfolded proteins accumulating and aggregating, and neuronal cells are particularly sensitive to misfolded proteins and are prone to degeneration. Many studies have shown that the UPR plays an important role in the pathogenesis of neurodegenerative diseases. Here, we will discuss the possible contributions of the endoplasmic reticulum unfolded protein response (UPRer) and the mitochondrial unfolded protein response (UPRmt) in the development of several neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17(7):829–838. https://doi.org/10.1038/ncb3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fiorese CJ, Haynes CM (2017) Integrating the UPR(mt) into the mitochondrial maintenance network. Crit Rev Biochem Mol Biol 52(3):304–313. https://doi.org/10.1080/10409238.2017.1291577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9(7). https://doi.org/10.1101/cshperspect.a028035

  4. Vincenz-Donnelly L, Hipp MS (2017) The endoplasmic reticulum: a hub of protein quality control in health and disease. Free Radical Biol Med 108:383–393. https://doi.org/10.1016/j.freeradbiomed.2017.03.031

    Article  CAS  Google Scholar 

  5. Fregno I, Molinari M (2019) Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Crit Rev Biochem Mol Biol 54(2):153–163. https://doi.org/10.1080/10409238.2019.1610351

    Article  CAS  PubMed  Google Scholar 

  6. Plate L, Wiseman RL (2017) Regulating secretory proteostasis through the unfolded protein response: from function to therapy. Trends Cell Biol 27(10):722–737. https://doi.org/10.1016/j.tcb.2017.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Le QG, Kimata Y (2021) Multiple ways for stress sensing and regulation of the endoplasmic reticulum-stress sensors. Cell Struct Funct 46(1):37–49. https://doi.org/10.1247/csf.21015

    Article  CAS  PubMed  Google Scholar 

  8. Hetz C, Zhang K, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21(8):421–438. https://doi.org/10.1038/s41580-020-0250-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peschek J, Acosta-Alvear D, Mendez AS, Walter P (2015) A conformational RNA zipper promotes intron ejection during non-conventional XBP1 mRNA splicing. EMBO Rep 16(12):1688–1698. https://doi.org/10.15252/embr.201540955

  10. Preissler S, Ron D (2019) Early events in the endoplasmic reticulum unfolded protein response. Cold Spring Harb Perspect Biol 11(4). https://doi.org/10.1101/cshperspect.a033894

  11. Ghemrawi R, Khair M (2020) Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci 21(17). https://doi.org/10.3390/ijms21176127

  12. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490. https://doi.org/10.1038/ncb2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hien LT, Back SH (2021) Establishment of a reporter system for monitoring activation of the ER stress transducer ATF6β. Biochem Biophys Res Commun 558:1–7. https://doi.org/10.1016/j.bbrc.2021.04.052

    Article  CAS  PubMed  Google Scholar 

  14. Sharma RB, Snyder JT, Alonso LC (2019) Atf6alpha impacts cell number by influencing survival, death and proliferation. Mol Metab 27S:S69–S80. https://doi.org/10.1016/j.molmet.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  15. Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y, Wen Z, Florens L, Li R (2017) Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543(7645):443–446. https://doi.org/10.1038/nature21695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C (2014) The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. Cell Metab 19(3):357–372. https://doi.org/10.1016/j.cmet.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  17. Anderson NS, Haynes CM (2020) Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol 30(6):428–439. https://doi.org/10.1016/j.tcb.2020.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deng P, Uma Naresh N, Du Y, Lamech LT, Yu J, Zhu LJ, Pukkila-Worley R, Haynes CM (2019) Mitochondrial UPR repression during infection requires the bZIP protein ZIP-3. Proc Natl Acad Sci USA 116(13):6146–6151. https://doi.org/10.1073/pnas.1817259116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu L, Zhou Q, He L, Chen L (2021) Mitochondrial unfolded protein response: an emerging pathway in human diseases. Free Radic Biol Med 163:125–134. https://doi.org/10.1016/j.freeradbiomed.2020.12.013

    Article  CAS  PubMed  Google Scholar 

  20. Bezawork-Geleta A, Brodie EJ, Dougan DA, Truscott KN (2015) LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep 5:17397. https://doi.org/10.1038/srep17397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Munoz-Carvajal F, Sanhueza M (2020) The mitochondrial unfolded protein response: a hinge between healthy and pathological aging. Front Aging Neurosci 12:581849. https://doi.org/10.3389/fnagi.2020.581849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Melber A, Haynes CM (2018) UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28(3):281–295. https://doi.org/10.1038/cr.2018.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM (2016) The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol 26(15):2037–2043. https://doi.org/10.1016/j.cub.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Munch C (2018) The different axes of the mammalian mitochondrial unfolded protein response. BMC Biol 16(1):81. https://doi.org/10.1186/s12915-018-0548-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193. https://doi.org/10.1038/s41593-020-0687-6

    Article  CAS  PubMed  Google Scholar 

  26. Wan YW, Al-Ouran R, Mangleburg CG, Perumal TM, Lee TV, Allison K, Swarup V, Funk CC, Gaiteri C, Allen M et al (2020) Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Rep 32(2):107908. https://doi.org/10.1016/j.celrep.2020.107908

  27. Yuan SH, Hiramatsu N, Liu Q, Sun XV, Lenh D, Chan P, Chiang K, Koo EH, Kao AW, Litvan I et al (2018) Tauopathy-associated PERK alleles are functional hypomorphs that increase neuronal vulnerability to ER stress. Hum Mol Genet 27(22):3951–3963. https://doi.org/10.1093/hmg/ddy297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He L, Loika Y, Park Y, Genotype Tissue Expression c, Bennett DA, Kellis M, Kulminski AM, Alzheimer’s Disease Neuroimaging I (2021) Exome-wide age-of-onset analysis reveals exonic variants in ERN1 and SPPL2C associated with Alzheimer’s disease. Transl Psychiatry 11(1):146. https://doi.org/10.1038/s41398-021-01263-4

  29. Poirier Y, Grimm A, Schmitt K, Eckert A (2019) Link between the unfolded protein response and dysregulation of mitochondrial bioenergetics in Alzheimer’s disease. Cell Mol Life Sci 76(7):1419–1431. https://doi.org/10.1007/s00018-019-03009-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duran-Aniotz C, Cornejo VH, Espinoza S, Ardiles AO, Medinas DB, Salazar C, Foley A, Gajardo I, Thielen P, Iwawaki T et al (2017) IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathol 134(3):489–506. https://doi.org/10.1007/s00401-017-1694-x

    Article  CAS  PubMed  Google Scholar 

  31. Reinhardt S, Schuck F, Grösgen S, Riemenschneider M, Hartmann T, Postina R, Grimm M, Endres K (2013) Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer’s disease. FASEB J 28(2):978–997. https://doi.org/10.1096/fj.13-234864

    Article  CAS  PubMed  Google Scholar 

  32. Waldherr SM, Strovas TJ, Vadset TA, Liachko NF, Kraemer BC (2019) Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nat Commun 10(1):4443. https://doi.org/10.1038/s41467-019-12070-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cisse M, Duplan E, Lorivel T, Dunys J, Bauer C, Meckler X, Gerakis Y, Lauritzen I, Checler F (2017) The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the Kalirin-7 pathway in Alzheimer model. Mol Psychiatry 22(11):1562–1575. https://doi.org/10.1038/mp.2016.152

    Article  CAS  PubMed  Google Scholar 

  34. Duran-Aniotz C, Poblete N, Rivera-Krstulovic C, Ardiles AO, Diaz-Hung ML, Tamburini G, Sabusap CMP, Gerakis Y, Cabral-Miranda F, Diaz J et al (2023) The unfolded protein response transcription factor XBP1s ameliorates Alzheimer’s disease by improving synaptic function and proteostasis. Molecular therapy : the journal of the American Society of Gene Therapy 31(7):2240–2256. https://doi.org/10.1016/j.ymthe.2023.03.028

    Article  CAS  PubMed  Google Scholar 

  35. Radford H, Moreno JA, Verity N, Halliday M, Mallucci GR (2015) PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol 130(5):633–642. https://doi.org/10.1007/s00401-015-1487-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baleriola J, Walker CA, Jean YY, Crary JF, Troy CM, Nagy PL, Hengst U (2014) Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions. Cell 158(5):1159–1172. https://doi.org/10.1016/j.cell.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beck JS, Mufson EJ, Counts SE (2016) Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13(6):610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen Y, Ding M, Xie Z, Liu X, Yang H, Jin S, Xu S, Zhu Z, Wang Y, Wang D et al (2019) Activation of mitochondrial unfolded protein response in SHSY5Y expressing APP cells and APP/PS1 mice. Front Cell Neurosci 13:568. https://doi.org/10.3389/fncel.2019.00568

    Article  CAS  PubMed  Google Scholar 

  39. Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D’Amico D, Moullan N, Potenza F, Schmid AW, Rietsch S et al (2017) Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552(7684):187–193. https://doi.org/10.1038/nature25143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pérez MJ, Ivanyuk D, Panagiotakopoulou V, Di Napoli G, Kalb S, Brunetti D, Al-Shaana R, Kaeser SA, Fraschka SA-K, Jucker M et al (2021) Loss of function of the mitochondrial peptidase PITRM1 induces proteotoxic stress and Alzheimer’s disease-like pathology in human cerebral organoids. Mol Psychiatry 26(10):5733–5750. https://doi.org/10.1038/s41380-020-0807-4

    Article  CAS  PubMed  Google Scholar 

  41. Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42. https://doi.org/10.1111/ene.14108

    Article  CAS  PubMed  Google Scholar 

  42. Smajić S, Prada-Medina CA, Landoulsi Z, Ghelfi J, Delcambre S, Dietrich C, Jarazo J, Henck J, Balachandran S, Pachchek S et al (2022) Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145(3):964–978. https://doi.org/10.1093/brain/awab446

    Article  PubMed  Google Scholar 

  43. Nido GS, Dick F, Toker L, Petersen K, Alves G, Tysnes O-B, Jonassen I, Haugarvoll K, Tzoulis C (2020) Common gene expression signatures in Parkinson’s disease are driven by changes in cell composition. Acta Neuropathol Commun 8(1). https://doi.org/10.1186/s40478-020-00932-7

  44. Verheijen BM, Lussier C, Muller-Hubers C, Garruto RM, Oyanagi K, Braun RJ, van Leeuwen FW (2020) Activation of the unfolded protein response and proteostasis disturbance in Parkinsonism-dementia of Guam. J Neuropathol Exp Neurol 79(1):34–45. https://doi.org/10.1093/jnen/nlz110

    Article  CAS  PubMed  Google Scholar 

  45. Heman-Ackah SM, Manzano R, Hoozemans JJM, Scheper W, Flynn R, Haerty W, Cowley SA, Bassett AR, Wood MJA (2017) Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Hum Mol Genet 26(22):4441–4450. https://doi.org/10.1093/hmg/ddx331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan C, Liu J, Gao J, Sun Y, Zhang L, Song H, Xue L, Zhan L, Gao G, Ke Z et al (2019) IRE1 promotes neurodegeneration through autophagy-dependent neuron death in the Drosophila model of Parkinson’s disease. Cell Death Dis 10(11):800. https://doi.org/10.1038/s41419-019-2039-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Valdés P, Mercado G, Vidal RL, Molina C, Parsons G, Court FA, Martinez A, Galleguillos D, Armentano D, Schneider BL et al (2014) Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1. Proc Natl Acad Sci USA 111(18):6804–6809. https://doi.org/10.1073/pnas.1321845111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mercado G, Castillo V, Soto P, Lopez N, Axten JM, Sardi SP, Hoozemans JJM, Hetz C (2018) Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol Dis 112:136–148. https://doi.org/10.1016/j.nbd.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  49. Credle JJ, Forcelli PA, Delannoy M, Oaks AW, Permaul E, Berry DL, Duka V, Wills J, Sidhu A (2015) alpha-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol Dis 76:112–125. https://doi.org/10.1016/j.nbd.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  50. Cooper JF, Machiela E, Dues DJ, Spielbauer KK, Senchuk MM, Van Raamsdonk JM (2017) Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson’s disease models. Sci Rep 7(1):16441. https://doi.org/10.1038/s41598-017-16637-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu M, Yu S, Wang J, Qiao J, Liu Y, Wang S, Zhao Y (2020) Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson’s disease. J Ethnopharmacol 247:112213. https://doi.org/10.1016/j.jep.2019.112213

    Article  CAS  PubMed  Google Scholar 

  52. Hu D, Sun X, Liao X, Zhang X, Zarabi S, Schimmer A, Hong Y, Ford C, Luo Y, Qi X (2019) Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. Acta Neuropathol 137(6):939–960. https://doi.org/10.1007/s00401-019-01993-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martinez BA, Petersen DA, Gaeta AL, Stanley SP, Caldwell GA, Caldwell KA (2017) Dysregulation of the mitochondrial unfolded protein response induces non-apoptotic dopaminergic neurodegeneration in C. elegans models of Parkinson’s disease. J Neurosci 37(46):11085–11100. https://doi.org/10.1523/JNEUROSCI.1294-17.2017

  54. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34. https://doi.org/10.1111/ene.13413

    Article  CAS  PubMed  Google Scholar 

  55. Leitman J, Ulrich Hartl F, Lederkremer GZ (2013) Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat Commun 4:2753. https://doi.org/10.1038/ncomms3753

    Article  CAS  PubMed  Google Scholar 

  56. Lee H, Ahn HH, Lee W, Oh Y, Choi H, Shim SM, Shin J, Jung YK (2016) ENC1 modulates the aggregation and neurotoxicity of mutant Huntingtin through p62 under ER stress. Mol Neurobiol 53(10):6620–6634. https://doi.org/10.1007/s12035-015-9557-8

    Article  CAS  PubMed  Google Scholar 

  57. Lee H, Noh JY, Oh Y, Kim Y, Chang JW, Chung CW, Lee ST, Kim M, Ryu H, Jung YK (2012) IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 21(1):101–114. https://doi.org/10.1093/hmg/ddr445

    Article  CAS  PubMed  Google Scholar 

  58. Zuleta A, Vidal RL, Armentano D, Parsons G, Hetz C (2012) AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington’s disease. Biochem Biophys Res Commun 420(3):558–563. https://doi.org/10.1016/j.bbrc.2012.03.033

    Article  CAS  PubMed  Google Scholar 

  59. Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, Kiffin R, Segura-Aguilar J, Cuervo AM et al (2012) Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet 21(10):2245–2262. https://doi.org/10.1093/hmg/dds040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Almeida LM, Oliveira Â, Oliveira JMA, Pinho BR (2023) Stress response mechanisms in protein misfolding diseases: profiling a cellular model of Huntington’s disease. Arch Biochem Biophys 745:109711. https://doi.org/10.1016/j.abb.2023.109711

    Article  CAS  PubMed  Google Scholar 

  61. Yano M (2017) ABCB10 depletion reduces unfolded protein response in mitochondria. Biochem Biophys Res Commun 486(2):465–469. https://doi.org/10.1016/j.bbrc.2017.03.063

    Article  CAS  PubMed  Google Scholar 

  62. Fu Z, Liu F, Liu C, Jin B, Jiang Y, Tang M, Qi X (1865) Guo X (2019) Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability. Biochim Biophys Acta Mol Basis Dis 6:1428–1435. https://doi.org/10.1016/j.bbadis.2019.02.015

    Article  CAS  Google Scholar 

  63. Verde F, Silani V, Otto M (2019) Neurochemical biomarkers in amyotrophic lateral sclerosis. Curr Opin Neurol 32(5):747–757. https://doi.org/10.1097/WCO.0000000000000744

    Article  CAS  PubMed  Google Scholar 

  64. Prudencio M, Belzil VV, Batra R, Ross CA, Gendron TF, Pregent LJ, Murray ME, Overstreet KK, Piazza-Johnston AE, Desaro P et al (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18(8):1175–1182. https://doi.org/10.1038/nn.4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soejima-Kusunoki A, Okada K, Saito R, Watabe K (2022) The protective effect of edaravone on TDP-43 plus oxidative stress-induced neurotoxicity in neuronal cells: analysis of its neuroprotective mechanisms using RNA sequencing. Pharmaceuticals 15(7). https://doi.org/10.3390/ph15070842

  66. Prell T, Lautenschlager J, Witte OW, Carri MT, Grosskreutz J (2012) The unfolded protein response in models of human mutant G93A amyotrophic lateral sclerosis. Eur J Neurosci 35(5):652–660. https://doi.org/10.1111/j.1460-9568.2012.08008.x

    Article  CAS  PubMed  Google Scholar 

  67. Bugallo R, Marlin E, Baltanas A, Toledo E, Ferrero R, Vinueza-Gavilanes R, Larrea L, Arrasate M, Aragon T (2020) Fine tuning of the unfolded protein response by ISRIB improves neuronal survival in a model of amyotrophic lateral sclerosis. Cell Death Dis 11(5):397. https://doi.org/10.1038/s41419-020-2601-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang HQ, Ren M, Jiang HZ, Wang J, Zhang J, Yin X, Wang SY, Qi Y, Wang XD, Feng HL (2014) Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 277:132–138. https://doi.org/10.1016/j.neuroscience.2014.03.047

    Article  CAS  PubMed  Google Scholar 

  69. Ghadge GD, Sonobe Y, Camarena A, Drigotas C, Rigo F, Ling KK, Roos RP (2020) Knockdown of GADD34 in neonatal mutant SOD1 mice ameliorates ALS. Neurobiol Dis 136:104702. https://doi.org/10.1016/j.nbd.2019.104702

    Article  CAS  PubMed  Google Scholar 

  70. Matus S, Lopez E, Valenzuela V, Nassif M, Hetz C (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS ONE 8(7):e66672. https://doi.org/10.1371/journal.pone.0066672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dzhashiashvili Y, Monckton CP, Shah HS, Kunjamma RB, Popko B (2019) The UPR-PERK pathway is not a promising therapeutic target for mutant SOD1-induced ALS. Neurobiol Dis 127:527–544. https://doi.org/10.1016/j.nbd.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng W, Wang S, Mestre AA, Fu C, Makarem A, Xian F, Hayes LR, Lopez-Gonzalez R, Drenner K, Jiang J et al (2018) C9ORF72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2alpha phosphorylation. Nat Commun 9(1):51. https://doi.org/10.1038/s41467-017-02495-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sahana TG, Chase KJ, Liu F, Lloyd TE, Rossoll W, Zhang K (2023) c-Jun N-terminal kinase promotes stress granule assembly and neurodegeneration in C9orf72-mediated ALS and FTD. J Neurosci 43(17):3186–3197. https://doi.org/10.1523/jneurosci.1799-22.2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee S, Shang Y, Redmond SA, Urisman A, Tang AA, Li KH, Burlingame AL, Pak RA, Jovicic A, Gitler AD et al (2016) Activation of HIPK2 promotes ER stress-mediated neurodegeneration in amyotrophic lateral sclerosis. Neuron 91(1):41–55. https://doi.org/10.1016/j.neuron.2016.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Riar AK, Burstein SR, Palomo GM, Arreguin A, Manfredi G, Germain D (2017) Sex specific activation of the ERalpha axis of the mitochondrial UPR (UPRmt) in the G93A-SOD1 mouse model of familial ALS. Hum Mol Genet 26(7):1318–1327. https://doi.org/10.1093/hmg/ddx049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pharaoh G, Sataranatarajan K, Street K, Hill S, Gregston J, Ahn B, Kinter C, Kinter M, Van Remmen H (2019) Metabolic and stress response changes precede disease onset in the spinal cord of mutant SOD1 ALS mice. Front Neurosci 13:487. https://doi.org/10.3389/fnins.2019.00487

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhou Q, Zhu L, Qiu W, Liu Y, Yang F, Chen W, Xu R (2020) Nicotinamide riboside enhances mitochondrial proteostasis and adult neurogenesis through activation of mitochondrial unfolded protein response signaling in the brain of ALS SOD1(G93A) mice. Int J Biol Sci 16(2):284–297. https://doi.org/10.7150/ijbs.38487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang P, Deng J, Dong J, Liu J, Bigio EH, Mesulam M, Wang T, Sun L, Wang L, Lee AY et al (2019) TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet 15(5):e1007947. https://doi.org/10.1371/journal.pgen.1007947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deng J, Wang P, Chen X, Cheng H, Liu J, Fushimi K, Zhu L, Wu JY (2018) FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc Natl Acad Sci USA 115(41):E9678–E9686. https://doi.org/10.1073/pnas.1806655115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81502779) and Natural Science Foundation of Liaoning Province, China (No. QN2019030).

Author information

Authors and Affiliations

Authors

Contributions

Si Xu conceived and drafted this manuscript. All authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Tianyao Yang or Wei Liu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Liu, H., Wang, C. et al. Dual roles of UPRer and UPRmt in neurodegenerative diseases. J Mol Med 101, 1499–1512 (2023). https://doi.org/10.1007/s00109-023-02382-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02382-9

Keywords

Navigation