Skip to main content
Log in

An Insight into the Insecticidal Activity of Green Synthesized Silver Nanoparticles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Nanotechnology is an interdisciplinary science that focuses on developing various nanoparticles. Silver nanoparticles (AgNPs) have a wide variety of potential uses that emerge from their unconventional properties. Research on green synthesis of AgNPs has gained a lot of attention because of the drawbacks associated with the chemical synthesis process, which include high energy consumption, the high toxicity of solvents, and severe pollution. The green synthesis of AgNPs involves the reduction of Ag+ in AgNO3 to the nanoscale silver using fungi, Waste products, bacterial culture, and plant extract as reductants or stabilizers. The manufacture of AgNPs from plant extract is a cheap and eco-friendly, and time-efficient approach in which secondary metabolites in plant extract, act as both reducing and stabilizing agents. Due to the outburst of mosquitoes, people are currently suffering from dengue, and malaria, and increased utilization of pesticides are affecting crops. This review focuses on the green synthesis of AgNPs and their insecticidal properties. Additionally, it contrasts effective synthesis techniques using environmentally friendly approaches, providing an option for choosing the best way for AgNPs synthesis. The green synthesized AgNPs can induce mortality, virtually in all stages of mosquitoes, starting from the larval stage to the adult stage. This review covers, for the first time, the importance of green-synthesized AgNPs and their efficient insecticidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Devanesan, S., AlSalhi, M.S., Balaji, R.V., Ranjitsingh, A.J.A., Ahamed, A., Alfuraydi, A.A., AlQahtani, F.Y., Aleanizy, F.S., and Othman, A.H., Antimicrobial and cytotoxicity effects of synthesized silver nanoparticles from Punica granatum peel extract, Nanoscale Res. Lett., 2018, vol. 13, pp. 1–10. https://doi.org/10.1186/s11671-018-2731-y

    Article  CAS  Google Scholar 

  2. Mubarak, Ali D., Thajuddin, N., Jeganathan, K., and Gunasekaran, M., Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloids Surf., B, 2011, vol. 85, no. 2, pp. 360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009

    Article  CAS  Google Scholar 

  3. Harekrishna, B., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., and Misra, A., Green synthesis of silver nanoparticles using latex of Jatropha curcas, Colloids Surf., A, 2009, vol. 339, nos. 1–3, pp. 134–139. https://doi.org/10.1016/j.colsurfa.2009.02.008

    Article  CAS  Google Scholar 

  4. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., and Srinivasan, K., Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity, Spectrochim. Acta, Part A, 2011, vol. 79, no. 3, pp. 594–598. https://doi.org/10.1016/j.saa.2011.03.040

    Article  CAS  Google Scholar 

  5. Saylan, Y., Akgönüllü, S., Çimen, D., Derazshamshir, A., and Bereli, N., Yılmaz, F., and Denizli, A., Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides, Sens. Actuators, B, 2017, vol. 241, pp. 446–454. https://doi.org/10.1016/j.snb.2016.10.017

    Article  CAS  Google Scholar 

  6. Padalia, H., Moteriya, P., and Chanda, S., Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential, Arabian J. Chem., 2015, vol. 8, no. 5, pp. 732– 741. https://doi.org/10.1016/j.arabjc.2014.11.015

    Article  CAS  Google Scholar 

  7. Keat, C.L., Aziz, A., Eid, A.M., and Elmarzugi, N.A., Biosynthesis of nanoparticles and silver nanoparticles, Bioresources and Bioprocessing, 2015, vol. 2, p. 47. https://doi.org/10.1186/s40643-015-0076-2

    Article  Google Scholar 

  8. Belova, M.M., Shipunova, V.O., Kotelnikova, P.A., Babenyshev, A.V., Rogozhin, E.A., Cherednichenko, M.Y., and Deyev, S.M., “Green” synthesis of cytotoxic silver nanoparticles based on secondary metabolites of Lavandula angustifolia Mill, Acta Naturae, 2019, vol. 11, no. 2 (41), pp. 47–53.

  9. Shipunova, V.O., Belova, M.M., Kotelnikova, P.A., Shilova, O.N., Mirkasymov, A.B., Danilova, N.V., and Nikitin, M.P., Photothermal therapy with HER2-targeted silver nanoparticles leading to cancer remission, Pharmaceutics, 2022, vol. 14, no. 5, p. 1013. https://doi.org/10.3390/pharmaceutics14051013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sastry, M., Ahmad, A., Khan, M.I., and Kumar, R., Biosynthesis of metal nanoparticles using fungi and actinomycete, Current Science, 2003, vol. 85, no. 2, pp. 162–170.

    CAS  Google Scholar 

  11. Siavash, I., Hassan, K., Vahid, M.S., and Hasti, M., Plants in Nanoparticle Synthesis, Reviews in Advanced Sciences and Engineering, 2014, vol. 3, no 3, pp. 261–274. https://doi.org/10.1166/rase.2014.1069

    Article  Google Scholar 

  12. Urakaev, F.Kh., Khan, N.V., Shalabaev, Zh.S., Tatykaev, B.B., Nadirov, R.K., and Burkitbaev, M.M., Synthesis and photocatalytic properties of silver chloride/silver composite colloidal particles, Colloid J., 2020, vol. 82, pp. 76–80. https://doi.org/10.1134/S1061933X20010160

    Article  CAS  Google Scholar 

  13. Urakaev, F.Kh., Tatykaev, B.B., Burkitbayev, M.M., Bakhadur, A.M., and Uralbekov, B.M., Mechanochemical synthesis of colloidal silver bromide particles in the NaBr–AgNO3–NaNO3 system, Colloid J., 2016, vol. 78, pp. 525–532. https://doi.org/10.1134/S1061933X16040190

    Article  CAS  Google Scholar 

  14. Khan, N.V., Balaz, M., Burkitbayev, M.M., Tatykayev, B.B., Shalabayev, Zh.S., Niyazbayeva, A.I., and Urakaev, F.Kh., Solvothermal DMSO-mediated synthesis of the S/AgI micro-/nano-structures and its application as photocatalytic and biological agents, Int. J. Biol. Biochem., 2022, vol. 15, no. 1, pp. 79–89. https://doi.org/10.26577/ijbch.2022.v15.i1.09

    Article  CAS  Google Scholar 

  15. Khan, N.V., Burkitbayev, M.M., and Urakaev, F.Kh., Preparation and properties of nanocomposites in the systems S-AgI and S-Ag2S-AgI in dimethyl sulfoxide, in IOP Conference Series: Materials Science and Engineering, 2019, vol. 704, p. 012007.

    Article  CAS  Google Scholar 

  16. Khan, N., Balaz, M., Burkitbayev, M., Tatykayev, B., Shalabayev, Zh., Nemkayeva, R., Jumagaziyeva, A., Niyazbayeva, A., Rakhimbek, I., Beldeubayev, A., and Urakaev, F., DMSO-mediated solvothermal synthesis of S/AgX (X = Cl, Br) microstructures and study of their photocatalytic and biological activity, Applied Surface Science, 2022, vol. 601, p. 154122. https://doi.org/10.1016/j.apsusc.2022.154122

    Article  CAS  Google Scholar 

  17. Ragaei, M. and Sabry, A.H., Nanotechnology for insect pest control, International Journal of Science, Environment, and Technology, 2014, vol. 3, no. 2, 2014, pp. 528–545.

  18. Husen, A. and Siddiqi, K.S., Phytosynthesis of nanoparticles: Concept, controversy, and application, Nanoscale Res. Lett., 2014, vol. 9, pp. 1–24. https://doi.org/10.1186/1556-276X-9-229

    Article  CAS  Google Scholar 

  19. Zhang, Q., Li, N., Goebl, J., Lu, Z., and Yin, Y., A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent?, J. Am. Chem. Soc., 2011, vol. 133, pp. 18931–18939. https://doi.org/10.1021/ja2080345

    Article  CAS  PubMed  Google Scholar 

  20. Roldán, M.V., Pellegri, N., and de Sanctis, O., Electrochemical method for Ag-PEG nanoparticles synthesis, J. Nanopart., 2013, vol. 2013, p. 5241507. https://doi.org/10.1155/2013/524150

    Article  CAS  Google Scholar 

  21. Slavin, Y.N., Asnis, J., Häfeli, U.O., and Bach, H., Metal nanoparticles: Understanding the mechanisms behind antibacterial activity, J. Nanobiotechnol., 2017, vol. 15, no. 65, pp. 1–20. https://doi.org/10.1021/es101072s

    Article  CAS  Google Scholar 

  22. Sotiriou, G.A., Teleki, A., Camenzind, A., Krumeich, F., Meyer, A., Panke, S., and Pratsinis, S.E., Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area, Chem. Eng. J., 2011, vol. 170, nos. 2–3, pp. 547–554. https://doi.org/10.1016/j.cej.2011.01.099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., and Reda, A.A.A., Synthesis and applications of silver nanoparticles, Arabian J. Chem., 2010, vol. 3, no. 3, pp. 135–140. https://doi.org/10.1016/j.arabjc.2010.04.008

    Article  CAS  Google Scholar 

  24. Jha, A.K., Prasad, K., Prasad, K., and Kulkarni, A.R., Plant system: Nature’s nanofactory, Colloids Surf., 2009, vol. 73, no. 2, pp. 219–223. https://doi.org/10.1016/j.colsurfb.2009.05.018

    Article  CAS  Google Scholar 

  25. Sandhu, S.S., Shukla, H., and Shukla, S., Biosynthesis of silver nanoparticles by endophytic fungi: Its mechanism, characterization techniques and antimicrobial potential, Afr. J. Biotechnol., 2017, vol. 16, no. 14, pp. 683–698. https://doi.org/10.5897/AJB2017.15873

    Article  CAS  Google Scholar 

  26. Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B., and Zeng, Z., Development strategies and prospects of nano-based smart pesticide formulation, J. Agric. Food Chem., 2017, vol. 66, no. 26, pp. 6504–6512. https://doi.org/10.1021/acs.jafc.7b02004

    Article  CAS  PubMed  Google Scholar 

  27. Gul, S., Ismail, M., Khan, M.I., Khan, S.B., Asiri, A.M., Rahman, I.U., Khan, M.A., and Kamboh, M.A., Novel synthesis of silver nanoparticles using melon aqueous extract and evaluation of their feeding deterrent activity against housefly Musca domestica, Asian Pac. J. Trop. Dis., 2016, vol. 6, no 4, pp. 311–316. https://doi.org/10.1016/S2222-1808(15)61036-2

    Article  Google Scholar 

  28. Govindarajan, M., Rajeswary, M., Veerakumar, K., Muthukumaran, U., Hoti, S.L., and Benelli, G., Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: Mosquitocidal potential against malaria, dengue, and Japanese encephalitis vectors, Exp. Parasitol., 2016, vol. 161, pp. 40–47. https://doi.org/10.1016/j.exppara.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  29. AlQahtani, F.S., AlShebly, M.M., Govindarajan, M., Senthilmurugan, S., Vijayan, P., and Benelli, G., Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaves: Toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors, J. Dispersion Sci. Technol., 2017, vol. 20, no. 1, pp. 157–164. https://doi.org/10.1016/j.aspen.2016.12.004

    Article  Google Scholar 

  30. Alyahya, S.A., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., Mothana, R.A., Alanbr, M.N., Vaseeharan, B., Ishwarya, R., Yazhiniprabha, M., and Benelli, G., Swift fabrication of Ag nanostructures using a colloidal solution of Holostemma ada-kodien (Apocynaceae)—Antibiofilm potential, insecticidal activity against mosquitoes and non-target impact on water bugs, J. Photochem. Photobiol., B, 2018, vol. 181, pp. 70–79. https://doi.org/10.1016/j.jphotobiol.2018.02.019

    Article  CAS  PubMed  Google Scholar 

  31. Aziz, A.T., Alshehri, M.A., Panneerselvam, C., Murugan, K., Trivedi, S., Mahyoub, J.A., Hassan, M.M., Maggi, F., Sut, S., Dall’Acqua, S., Canale, A., and Benelli, G., The desert wormwood (Artemisia herba-alba)—From Arabian folk medicine to a source of green and effective nano-insecticides against mosquito vectors, J. Photochem. Photobiol., B, 2018, vol. 180, pp. 225–234. https://doi.org/10.1016/j.jphotobiol.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  32. Alharbi, N.S., Govindarajan, M., Kadaikunnan, S., Khaled, J.M., Almanaa, T.N., Alyahya, S.A., Alanbr, M.N., Gopinath, K., and Sudha, A., Nanosilver crystals capped with Bauhinia acuminata phytochemicals as new antimicrobials and mosquito larvicides, J. Trace Elem. Med. Biol., 2018, vol. 50, pp. 146–153. https://doi.org/10.1016/j.jtemb.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  33. Morejón, B., Pilaquinga, F., Domenech, F., Ganchala, D., Debut, A., and Neira, M., Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae), J. Nanotechnol., 2018, vol. 2018, p. 6917938. https://doi.org/10.1155/2018/6917938

    Article  CAS  Google Scholar 

  34. Nataya, S., Attrapadung, S., and Nuchprayoon, S., Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus, Insects, 2019, vol. 10, no. 1, p. 27. https://doi.org/10.3390/insects10010027

    Article  Google Scholar 

  35. Khatami, M., Iravani, S., Varma, R.S., Mosazade, F., Darroudi, M., and Borhani, F., Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity, Bioprocess Biosyst. Eng., 2019, vol. 42, pp. 2007–2014. https://doi.org/10.1007/s00449-019-02193-8

    Article  CAS  PubMed  Google Scholar 

  36. Pilaquinga, F., Morejón, B., Ganchala, D., Morey, J., Piña, N., Debut, A., and Neira, M., Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae), PLoS One, 2019, vol. 14, no. 10, p. e0224109. https://doi.org/10.1371/journal.pone.0224109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malathi, S., Rameshkumar, G., Rengarajan, R.L., Rajagopal, T., Muniasamy, S., and Ponmanickam, P., Phytofabrication of silver nanoparticles using Annona reticulata and assessment of insecticidal and bactericidal activities, J. Environ. Biol., 2019, vol. 40, no. 4, pp. 626–633. https://doi.org/10.22438/jeb/40/4/MRN-934

    Article  CAS  Google Scholar 

  38. Fowsiya, J. and Madhumitha, G., Biomolecules derived from Carissa edulis for the microwave assisted synthesis of Ag2O nanoparticles: A study against S. incertulas, C. medinalis and S. mauritia, J. Cluster Sci., 2019, vol. 30, pp. 1243–1252. https://doi.org/10.1007/s10876-019-01627-3

    Article  CAS  Google Scholar 

  39. El-Bendary, M.A., Moharam, M.E., Abdelraof, M., Allam, M.A., Roshdy, A.M., Shaheen, M.N., Elmahdy, E.M., and Elkomy, G.M., Multi-bioactive silver nanoparticles synthesized using mosquitocidal bacilli and their characterization, Arch. Microbiol., 2020, vol. 202, pp. 63–75. https://doi.org/10.1007/s00203-019-01718-9

    Article  CAS  PubMed  Google Scholar 

  40. Ajith, P., Murali, A.S., Sreehari, H., Vinod, B.S., Anil, A., and Smitha, C.S., Green synthesis of silver nanoparticles using Calotropis gigantea extract and its applications in antimicrobial and larvicidal activity, Mater. Today: Proc., 2019, vol. 18, pp. 4987–4991. https://doi.org/10.1016/j.matpr.2019.07.491

    Article  CAS  Google Scholar 

  41. Kadarkarai, M., Subramaniam, J., Rajaganesh, R., Panneerselvam, C., Amuthavalli, P., Vasanthakumaran, M., Jayashanthini, S., et al., Efficacy and side effects of bio-fabricated sardine fish scale silver nanoparticles against malarial vector Anopheles stephensi, Sci. Rep., 2021, vol. 11, no. 1, p. 19567. https://doi.org/10.1038/s41598-021-98899-5

    Article  CAS  Google Scholar 

  42. Waris, M., Nasir, S., Abbas, S., Azeem, M., Ahmad, B., Khan, N.A., et al., Evaluation of larvicidal efficacy of Ricinus communis (Castor) and synthesized green silver nanoparticles against Aedes aegypti L., Saudi J. Biol. Sci., 2020, vol. 27, no. 9, pp. 2403–2409. https://doi.org/10.1016/j.sjbs.2020.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carbone, K., Santangelo, E., De Angelis, A., Micheli, L., Frosinini, R., Gargani, E., Migliori, C., and Mazzucato, A., Green synthesis of silver nanoparticles from hyperpigmented tomato skins and preliminary evaluation of the insecticidal activity, in 28th European Biomass Conference and Exhibition, 2020, pp. 6–9.

  44. Ghramh, H.A., Ibrahim, E.H., Kilnay, M., Ahmad, Z., Alhag, S.K., Khan, K.A., et al., Silver nanoparticle production by Ruta graveolens and testing its safety, bioactivity, immune modulation, anticancer, and insecticidal potentials, Bioinorg. Chem. Appl., 2020, vol. 2020, p. 5626382. https://doi.org/10.1155/2020/5626382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jafir, M., Ahmad, J.N., Arif, M.J., Ali, S., and Ahmad, S.J.N., Characterization of Ocimum basilicum synthesized silver nanoparticles and its relative toxicity to some insecticides against tobacco cutworm, Spodoptera litura Feb. (Lepidoptera; Noctuidae), Ecotoxicol. Environ. Saf., 2021, vol. 218, p. 112278. https://doi.org/10.1016/j.ecoenv.2021.112278

    Article  CAS  PubMed  Google Scholar 

  46. Kitherian, S., Thangapandi, V., and Antony, M.R.J., Seaweed Lobophora variegata-based silver nanopesticide for environmentally friendly management of economically important pest, Spodoptera litura, Environ. Nanotechnol., Monit. Manage., 2021, vol. 16, p. 100531. https://doi.org/10.1016/j.enmm.2021.100531

    Article  CAS  Google Scholar 

  47. Chandhirasekar, K., Thendralmanikandan, A., Thangavelu, P., Nguyen, B.S., Nguyen, T.A., Sivashanmugan, K., Nareshkumar, A., and Nguyen, V.H., Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica, Mater. Lett., 2021, vol. 287, p. 129265. https://doi.org/10.1016/j.matlet.2020.129265

    Article  CAS  Google Scholar 

  48. Balan, L., Chandrasekaran, S., Gajendiran, M., and Nanjian, R., Synthesis of silver nanoparticles from Pedalium murex L. and its antiproliferative activity against breast cancer (MCF-7) cells, J. Mol. Struct., 2021, vol. 1242, p. 130695. https://doi.org/10.1016/j.molstruc.2021.130695

    Article  CAS  Google Scholar 

  49. Raguvaran, K., Kalpana, M., Manimegalai, T., and Maheswaran, R., Insecticidal, not-target organism activity of synthesized silver nanoparticles using Actinokineospora fastidiosa, Biocatal. Agric. Biotechnol., 2021, vol. 38, p. 102197. https://doi.org/10.1016/j.bcab.2021.102197

    Article  CAS  Google Scholar 

  50. Elumalai, D., Hemavathi, M., Rekha, G.S., Pushpalatha, M., Leelavathy, R., Vignesh, A., Ashok, K., and Babu, M., Photochemical synthesizes of silver nanoparticles using Oscillatoria sancta micro algae against mosquito vectors Aedes aegypti and Anopheles stephensi, Sensing and Bio-Sensing Research, 2021, vol. 34, p. 100457. https://doi.org/10.1016/j.sbsr.2021.100457

    Article  Google Scholar 

  51. Elumalai, D., Hemavathi, M., Deenadhayalan, N., Suman, T.Y., and Sathiyapriya, R., A novel approach for synthesis of silver nanoparticles using Pila virens shell and its mosquito larvicidal activity, Toxicol. Rep., 2021, vol. 8, pp. 1248–1254. https://doi.org/10.1016/j.toxrep.2021.06.018

    Article  CAS  Google Scholar 

  52. Gudkova, O., Bobkova, N., Feldman, N., Luferov, A., Gromovykh, T., Samylina, I., and Lutsenko, S., Study of the biological activity of arabinogalactan-stabilized silver nanoparticles towards watercress Lepidium sativum L. cv. Curled and plant pathogenic micromycete Fusarium sambucinum, Agric. Biol., 2021, vol. 56, no. 3, pp. 500–510.

    Google Scholar 

  53. Khalil, M.A., El-Shanshoury, A.E.R., Alghamdi, M.A., Alsalmi, F.A., Mohamed, S.F., Sun, J., and Ali, S.S., Biosynthesis of silver nanoparticles by Marine actinobacterium Nocardiopsis dassonvillei and exploring their therapeutic potentials, Front. Microbiol., 2022, vol. 12, p. 705673. https://doi.org/10.3389/fmicb.2021.705673

    Article  PubMed  PubMed Central  Google Scholar 

  54. Karthick, Raja, Namasivayam, S., and Arvind, Bharani, Biocompatible silver nanoparticles-loaded fungal metabolites nanoconjugate (AgNp-FM) preparation for the noteworthy pesticidal activity, Natl. Acad. Sci. Lett., 2021, vol. 44, pp. 511–517. https://doi.org/10.1007/s40009-021-01044-z

    Article  CAS  Google Scholar 

  55. Narayanan, M., Divya, S., Natarajan, D., Senthil-Nathan, S., Kandasamy, S., Chinnathambi, A., Alahmadi, T.A., and Pugazhendhi, A., Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications, Process Biochem., 2021, vol. 107, pp. 91–99. https://doi.org/10.1016/j.procbio.2021.05.008

    Article  CAS  Google Scholar 

  56. Shah, A., Lutfullah, G., Ahmad, K., Khalil, A.T., and Maaza, M., Daphne mucronata-mediated photosynthesis of silver nanoparticles and their novel biological applications, compatibility, and toxicity studies, Green Chem. Lett. Rev., 2018, vol. 11, no. 3, pp. 318–333. https://doi.org/10.1080/17518253.2018.1502365

    Article  CAS  Google Scholar 

  57. Mosa, W.F., El-Shehawi, A.M., Mackled, M.I., Salem, M.Z., Ghareeb, R.Y., Hafez, E.E., et al., Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application, Sci. Rep., 2021, vol. 11, p. 10205. https://doi.org/10.1038/s41598-021-89885-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Manimegalai, T., Raguvaran, K., Kalpana, M., Ajarem, A.J.S., Allam, A.A., Khim, J.S., and Maheswaran, R., Bio efficacy of synthesised silver nanoparticles using Dicrocephala integrifolia leaf extract and their insecticidal activity, Materials Letters, 2022, vol. 314, p. 131860. https://doi.org/10.1016/j.matlet.2022.131860

    Article  CAS  Google Scholar 

  59. Kumar, D., Kumar, P., Vikram, K., and Singh, H., Fabrication and characterization of noble crystalline silver nanoparticles from Pimenta dioica leave extract and analysis of chemical constituents for larvicidal applications, Saudi J. Biol. Sci., 2022, vol. 29, no. 2, pp. 1134–1146. https://doi.org/10.1016/j.sjbs.2021.09.052

    Article  CAS  PubMed  Google Scholar 

  60. Ahmad, N., Fozia, Jabeen, M., et al., Green fabrication of silver nanoparticles using Euphorbia serpens Kunth aqueous extract, their characterization, and investigation of its in vitro antioxidative, antimicrobial, insecticidal, and cytotoxic activities, BioMed Res. Int., 2012, vol. 2022, p. 5562849. https://doi.org/10.1155/2022/5562849

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are greatly thankful to the Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore for providing the necessary facilities.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunabalan Madhumitha.

Ethics declarations

The authors declare that there is no conflict of interest, financial or otherwise.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirthalingam Rajesh, Gunabalan Madhumitha An Insight into the Insecticidal Activity of Green Synthesized Silver Nanoparticles. Colloid J 85, 854–870 (2023). https://doi.org/10.1134/S1061933X23600045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600045

Keywords:

Navigation