Skip to main content
Log in

Influence of Antidepressant Drug on the Conductivity of Cationic Surfactant

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

In this study, the electrical conductivity of the antidepressant drug—nortriptyline hydrochloride and conventional surfactant—cetyldimethylethylammoniumbromide are investigated. The experimental critical micelle concentration and related thermodynamic parameters, such as Gibbs free energy, enthalpy, entropy change, as well as and excess change in Gibbs free energy are calculated using standard equations. The values of change in Gibbs free energy for the mixed nortriptyline hydrochloride with cetyldimethylethylammoniumbromide are found to be more negative further suggesting the mixed micellization to be favourable. However, the high values of change in entropy are observed owing to the charge on the head groups which are being partially neutralized by the counter ions upon micelle formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, New York: John Wiley, 1980, 2nd ed.

    Google Scholar 

  2. Müller, R.H., Colloidal Carriers for Controlled Drug Delivery and Targeting: Modification, Characterization and In Vivo Distribution, Taylor & Francis, 1991.

    Google Scholar 

  3. Microparticulate Systems for the Delivery of Proteins and Vaccines, Cohen, S. and Bernstein, H., Eds., CRC Press, 2020.

    Google Scholar 

  4. Khan, F., Siddiqui, U.S., Rub, M.A., Khan, I.A., and Kabir-ud-Din., Micellization behavior of butanediyl-1, 4-bis(dimethyldodecylammonium bromide) gemini surfactant in presence of organic additives, J. Dispersion Sci. Technol., 2015, vol. 36, no. 1, pp. 83–93. https://doi.org/10.1080/01932691.2013.852105

    Article  CAS  Google Scholar 

  5. Azum, N., Rub, M.A., and Asiri, A.M., Micellization and interfacial behavior of the sodium salt of ibuprofen–BRIJ-58 in aqueous/brine solutions, J. Solution Chem., 2016, vol. 45, pp. 791–803. https://doi.org/10.1007/s10953-016-0463-0

    Article  CAS  Google Scholar 

  6. Marzia, R., Khan, M.A., Rub, M.A., and Hoque, M.D., Effect of temperature and salts on the interaction of cetyltrimethylammonium bromide with ceftriaxone sodium trihydrate drug, J. Mol. Liq., 2016, vol. 223, pp. 716–724. https://doi.org/10.1016/j.molliq.2016.08.049

    Article  CAS  Google Scholar 

  7. Schreier, S., Malheiros, S.V.P., and de Paula, E., Surface active drugs: Self-association and interaction with membranes and surfactants. Physicochemical and biological aspects, Biochim. Biophys. Acta, Biomembr., 2000, vol. 1508, nos. 1–2, pp. 210–234. https://doi.org/10.1016/S0304-4157(00)00012-5

    Article  CAS  Google Scholar 

  8. Attwood, D. and Florence, A.T., Pharmaceutical Aspects of Solubilization. Surfactant Systems: Their Chemistry, Pharmacy and Biology, Springer, 1983.

    Google Scholar 

  9. Attwood, D., Gibson., Aggregation of antidepressant drugs in aqueous solution, J. Pharm. Pharmacol., 1978, vol. 30, no. 1, pp. 176–180. https://doi.org/10.1111/j.2042-7158.1978.tb13192.x

    Article  CAS  PubMed  Google Scholar 

  10. Taboada, P., Attwood, D., Ruso, J.M., García, M., and Mosquera, V., Static and dynamic light scattering study on the association of some antidepressants in aqueous electrolyte solutions, Phys. Chem. Chem. Phys., 2000, vol. 22, no. 22, pp. 5175–5179. https://doi.org/10.1039/B006400I

    Article  Google Scholar 

  11. Dileep, K. and Rub, M.A., Effect of sodium taurocholate on aggregation behavior of amphiphilic drug solution, Tenside Surfactants Detergents, 2015, vol. 52, no. 6, pp. 464–472.

    Article  Google Scholar 

  12. Rub, M.A., Azum, N., Khan, S.B., Marwani, H.M., and Asiri, A.M., Micellization behavior of amphiphilic drug promazine hydrochloride and sodium dodecyl sulfate mixtures at various temperatures: Effect of electrolyte and urea, J. Mol. Liq., 2015, vol. 212, pp. 532–543. https://doi.org/10.1016/j.molliq.2015.09.049

    Article  CAS  Google Scholar 

  13. Erdinç, N., Göktürk, S., and Tunçay, M., A study on the adsorption characteristics of an amphiphilic phenothiazine drug on activated charcoal in the presence of surfactants, Colloids Surf. B, 2010, vol. 75, no. 1, pp. 194–203. https://doi.org/10.1016/j.colsurfb.2009.08.031

    Article  CAS  Google Scholar 

  14. Barbosa, L.R., Caetano, W., and Itri, R., Homem-de-Mello, P., Santiago, P.S., and Tabak, M., Interaction of phenothiazine compounds with zwitterionic lysophosphatidylcholine micelles: Small angle X-ray scattering, electronic absorption spectroscopy, and theoretical calculations, J. Phys. Chem., 2006, vol. 110, no. 26, pp. 13086–13093. https://doi.org/10.1021/jp056486t

    Article  CAS  Google Scholar 

  15. Khan, A.B. and Naqvi, A.Z., Mixed micellization of antidepressant drug amitriptyline hydrochloride with cationic surfactants, Colloids Surf. B, 2010, vol. 80, no. 2, pp. 206–212. https://doi.org/10.1016/j.colsurfb.2010.06.007

    Article  CAS  Google Scholar 

  16. Caetano, W. and Tabak, M., Interaction of chlorpromazine and trifluoperazine with anionic sodium dodecyl sulfate (SDS) micelles: Electronic absorption and fluorescence studies, J. Colloid Interface Sci., 2000, vol. 225, no. 1, pp. 69–81. https://doi.org/10.1006/jcis.2000.6720

    Article  CAS  PubMed  Google Scholar 

  17. Al-Ahmadi, Mohammed, D.A., Naqvi, A.Z., and Akram, M., Conductometric study of antidepressant drug-cationic surfactant mixed micelles in aqueous solution, Colloids Surf. B, 2008, vol. 64, no. 1, pp. 65–69. https://doi.org/10.1016/j.colsurfb.2008.01.005

    Article  CAS  Google Scholar 

  18. Pethybridge, A.D., Talbot, J.D.R., and House, W.A., Precise conductance measurements on dilute aqueous solutions of sodium and potassium hydrogenphosphate and dihydrogenphosphate, J. Solution Chem., 2006, vol. 35, pp. 381–393. https://doi.org/10.1007/s10953-005-9003-z

    Article  CAS  Google Scholar 

  19. Lind, J.E., Jr, Zwolenik, J.J., and Fuoss, R.M., Calibration of conductance cells at 25° with aqueous solutions of potassium chloride, J. Am. Chem. Soc., 1959, vol. 81, no. 7, pp. 1557–1559. https://doi.org/10.1021/ja01516a010

    Article  CAS  Google Scholar 

  20. Padday, J.F., Pitt, A.R., and Pashley, R.M., Menisci at a free liquid surface: Surface tension from the maximum pull on a rod, J. Chem. Soc., Faraday Trans., 1975, vol. 71, pp. 1919–1931. https://doi.org/10.1039/F19757101919

    Article  CAS  Google Scholar 

  21. Riddick, J.A., Bunger, W.B., and Sakano, T.K., Organic Solvents: Physical Properties and Methods of Purification, 1986.

  22. Mahajan, S., Sharma, R., and Mahajan, R.K., Interactions of new 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) based surface active ionic liquids with amitriptyline hydrochloride: Micellization and interfacial studies, Colloids Surf. A, 2013, vol. 424, no. 5, pp. 96–104. https://doi.org/10.1016/j.colsurfa.2013.02.032

    Article  CAS  Google Scholar 

  23. Collins, K.D., Neilson, G.W., and Enderby, J.E., Ions in water: Characterizing the forces that control chemical processes and biological structure, Biophys. Chem., 2007, vol. 128, nos. 2–3, pp. 95–104. https://doi.org/10.1016/j.bpc.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  24. Abezgauz, L., Kuperkar, K., Hassan, P.A., Ramon, O., Bahadur, P., and Danino, D., Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride, J. Colloid Interface Sci., 2010, vol. 342, no. 1, pp. 83–92. https://doi.org/10.1016/j.jcis.2009.08.045

    Article  CAS  PubMed  Google Scholar 

  25. Mehta, S.K., Bhasin, K.K., Chauhan, R., and Dham, S., Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media, Colloids Surf. A, 2005, vol. 255, nos. 1–3, pp. 153–157. https://doi.org/10.1016/j.colsurfa.2004.12.038

    Article  CAS  Google Scholar 

  26. Evans, F.D. and Ninham, B.W., Ion binding and the hydrophobic effect, J. Phys. Chem., 1983, vol. 87, no. 24, pp. 5025–5032. https://doi.org/10.1021/j150642a050

    Article  CAS  Google Scholar 

  27. Chen, L.J., Lin, S.Y., Huang, C.C., and Chen, E.M., Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants, Colloids Surf. A, 1998, vol. 135, nos. 1–3, pp. 175–181. https://doi.org/10.1016/S0927-7757(97)00238-0

    Article  CAS  Google Scholar 

  28. Soumen, G., Burman, A.D., Gobinda, C.D., and Das, A.R., Interfacial and self-aggregation of binary mixtures of anionic and nonionic amphiphiles in aqueous medium, J. Phys.Chem. B, 2011, vol. 115, no. 38, pp. 11098–11112. https://doi.org/10.1021/jp204223t

    Article  CAS  Google Scholar 

  29. Malik, N.A. and Farooq, U., Effect of caffeine on the micellization and related thermodynamic parameters of sodium dodecyl sulphate, hexadecyltrimethylammonium bromide and triton X-100: A physicochemical study, Phys. Chem. Liq., 2022, vol. 60, no. 2, pp. 265–274. https://doi.org/10.1080/00319104.2021.1949594

    Article  CAS  Google Scholar 

  30. Moroi, Y., Micelles: Theoretical and Applied Aspects, Springer Science & Business Media, 1992.

    Book  Google Scholar 

  31. Kale, K.M. and Cussler, E.L., and. Evans, D.F., Characterization of micellar solutions using surfactant ion electrodes, J. Phys. Chem, 1980, vol. 84, no. 6, pp. 593–598. https://doi.org/10.1021/j100443a007

    Article  CAS  Google Scholar 

  32. Bandhopadhyay, A. and Moulik, S.P., Counterion binding behaviour of micelles of sodium dodecyl sulphate and bile salts in the pure state, in mutually mixed states and mixed with a nonionic surfactant, Colloid Polym. Sci., 1988, vol. 266, pp. 455–461. https://doi.org/10.1007/BF01457263

    Article  Google Scholar 

  33. Khan, A.B., Ali, M., Malik, N.A., Ali, A., and Patel, R., Role of 1-methyl-3-octylimidazolium chloride in the micellization behavior of amphiphilic drug amitriptyline hydrochloride, Colloids Surf. B, 2013, vol. 112, no. 1, pp. 460–465. https://doi.org/10.1016/j.colsurfb.2013.08.018

    Article  CAS  Google Scholar 

  34. Javadian, S. and Ruhi, V., Asadzadeh Shahir, A., Heydari, A., and Akbari. J., Imidazolium-based ionic liquids as modulators of physicochemical properties and nanostructures of CTAB in aqueous solution: The effect of alkyl chain length, hydrogen bonding capacity, and anion type, Ind. Eng. Chem. Res., 2013, vol. 52, no. 45, pp. 15838–15846. https://doi.org/10.1021/ie402188n

    Article  CAS  Google Scholar 

  35. Malik, N.A., Drug solubilization by surfactants: Experimental methods and theoretical perspectives, Mini-Rev. Med. Chem., 2022, vol. 22, no. 4, pp. 579–585. https://doi.org/10.2174/1389557521666210805111425

    Article  CAS  PubMed  Google Scholar 

  36. Chen, L.J., Lin, S.Y., Huang, C.C., and Chen, E.M., Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants, Colloids Surf. A, 1998, vol. 135, nos. 1–3, pp. 175–181. https://doi.org/10.1016/S0927-7757(97)00238-0

    Article  CAS  Google Scholar 

  37. El Seoud, O.A., Pires, P.A., Abdel-Moghny, T., and Bastos, E.L., Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides, J. Colloid Interface Sci., 2007, vol. 313, no. 1, pp. 296–304. https://doi.org/10.1016/j.jcis.2007.04.028

    Article  CAS  PubMed  Google Scholar 

  38. Malik, N.A., Farooq, U., Rather, M.A., and Shalla, A.H., Interactions of tricyclic antidepressant drug chlomipramine hydrochloride with imidazolium based surface active ionic liquid in aqueous solution, J. Mol. Liq., 2021, vol. 342, no. 15, p. 117427. https://doi.org/10.1016/j.molliq.2021.117427

    Article  CAS  Google Scholar 

  39. Zana, R., Ionization of cationic micelles: Effect of the detergent structure, J. Colloid Interface Sci., 1980, vol. 78, no. 2, pp. 330–337. https://doi.org/10.1016/0021-9797(80)90571-8

    Article  CAS  Google Scholar 

  40. Markina, Z.N., Panicheva, L.P., and Zadymova, N.M., Anomalous concentration dependence of equivalent electric conductivity in aqueous solutions of ionic micellar surfactants at various temperatures, Colloid J., 1997, vol. 59, no. 3, pp. 315–323.

    CAS  Google Scholar 

  41. Mata, J., Varade, D., and Bahadur, P., Aggregation behavior of quaternary salt based cationic surfactants, Thermochim. Acta, 2005, vol. 428, nos. 1–2, pp. 147–155. https://doi.org/10.1016/j.tca.2004.11.009

    Article  CAS  Google Scholar 

  42. Malik, N.A., Solubilization and interaction studies of bile salts with surfactants and drugs: A review, Appl. Biochem. Biotechnol., 2016, vol. 179, pp. 179–201. https://doi.org/10.1007/s12010-016-1987-x

    Article  CAS  PubMed  Google Scholar 

  43. Chatterjee, A.M., Moulik, S.P., Sanyal, S.K., Mishra, B.K., and Puri, P.M., Thermodynamics of micelle formation of ionic surfactants: A critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements, J. Phys. Chem. B, 2001, vol. 105, no. 51, pp. 12823–12831. https://doi.org/10.1021/jp0123029

    Article  CAS  Google Scholar 

  44. Galgano, P.D. and El Seoud, O.A., Micellar properties of surface active ionic liquids: A comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants, J. Colloid Interface Sci., 2010, vol. 345, no. 1, pp. 1–11. https://doi.org/10.1016/j.jcis.2010.01.078

    Article  CAS  PubMed  Google Scholar 

  45. Moroi, Y., Micelles: Theoretical and Applied Aspects, Springer Science & Business Media, 1992.

    Book  Google Scholar 

  46. Rosen, M.J., Surfactants and Interfacial Phenomena, New York: John Wiley and Sons, 2004, 3rd ed.

    Book  Google Scholar 

  47. Li, F., Li, G.Z., and Chen, J.B., Synergism in mixed zwitterionic-anionic surfactant solutions and the aggregation numbers of the mixed micelles, Colloids Surf. A, 1998, vol. 145, nos. 1–3, pp. 167–174. https://doi.org/10.1016/S0927-7757(98)00543-3

    Article  CAS  Google Scholar 

  48. Farooq, U., Ali, A., Patel, R., and Malik, N.A., Interaction between amphiphilic antidepressant drug nortriptyline hydrochloride and conventional cationic surfactants: A physicochemical study, J. Mol. Liq., 2017, vol. 233, pp. 310–318. https://doi.org/10.1016/j.molliq.2017.03.032

    Article  CAS  Google Scholar 

  49. Haque, M.E., Das, A.R., Rakshit, A.K., and Moulik, S.P., Properties of mixed micelles of binary surfactant combinations, Langmuir, 1996, vol. 12, no. 17, pp. 4084–4089. https://doi.org/10.1021/la9403587

    Article  CAS  Google Scholar 

  50. Dar, A.A., Rather, G.M., Ghosh, S., and Das, A.R., Micellization and interfacial behavior of binary and ternary mixtures of model cationic and nonionic surfactants in aqueous NaCl medium, J. Colloid Interface Sci., 2008, vol. 322, no. 2, pp. 572–581. https://doi.org/10.1016/j.jcis.2008.03.022

    Article  CAS  PubMed  Google Scholar 

  51. Azum, N., Rub, M.A., Asiri, A.M., Khan, A.A.P., Khan, A., Khan, S.B., Rahman, M.M., and Al-Youbi, A.O., Interaction of the amphiphilic drug amitriptyline hydrochloride with gemini and conventional surfactants: A physicochemical approach, J. Solution Chem., 2013, vol. 42, pp. 1532–1544. https://doi.org/10.1007/s10953-013-0047-1

    Article  CAS  Google Scholar 

  52. Buckingham, S.A., Christopher, J.G., and Warr, G.G., Effect of head-group size on micellization and phase behavior in quaternary ammonium surfactant systems, J. Phys. Chem., 1993, vol. 97, pp. 10236–10244.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

N.A. Malik would like to thank the Head Department of Chemistry, IUST for providing the necessary facilities.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Malik.

Ethics declarations

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, N.A., Farooq, U., Malik, A. et al. Influence of Antidepressant Drug on the Conductivity of Cationic Surfactant. Colloid J 85, 846–853 (2023). https://doi.org/10.1134/S1061933X22600555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22600555

Keywords:

Navigation