Skip to main content
Log in

Plant Extract-Mediated Synthesis of Ag-Doped ZnO: Eco-Friendly Nanomaterial for Environmental Restoration, Microbial Inhibition, Cell Toxicity, Antioxidant Potential, and Sensing

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Green synthesis is a unique and eco-friendly method of producing nanoparticles that employs plant extracts as reducing and stabilizing agents. This approach offers numerous advantages, including low cost, biocompatibility, sustainability, and ease of operation. ZnO has been applied in various fields such as optical, electrical, magnetic, catalytic, and biological. Drawbacks such as high band gap of 3.37 eV, faster recombination of generated electron hole pair, lower antibacterial activity hinders ZnO nanoparticles utilization. Metal doping is a technique that modifies the nanoparticle’s characteristics by adding impurities into their lattice which improves optical, electrical, magnetic, catalytic, and biological properties of the host material. Silver doped zinc oxide (Ag/ZnO) is one of the promising materials for metal doped nanoparticles due to its enhanced antibacterial, anticancer, sensing, and photocatalytic capabilities. In this paper, we reviewed plant mediated green synthesis of Ag/ZnO nanoparticles and their multifunctional properties for biomedical and environmental application as well as proposed mechanisms of their action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fauzi, A.A., Jalil, A.A., Hassan, N.S., et al., A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant, Chemosphere, 2021, vol. 286, p. 131651. https://doi.org/10.1016/j.chemosphere.2021.131651

    Article  CAS  PubMed  Google Scholar 

  2. Ayodhya, D. and Veerabhadram, G., A review on recent advances in photodegradation of dyes using doped and heterojunction-based semiconductor metal sulfide nanostructures for environmental protection, Mater. Today Energy, 2018, vol. 9, pp. 83–113. https://doi.org/10.1016/j.mtener.2018.05.007

    Article  Google Scholar 

  3. Chavali, M.S. and Nikolova, M.P., Metal oxide nanoparticles and their applications in nanotechnology, SN Applied Sciences, 2019, vol. 1, no. 6, p. 607. https://doi.org/10.1007/s42452-019-0592-3

    Article  CAS  Google Scholar 

  4. Fujishima, A. and Honda,K., Electrochemical photolysis of wate rat a semiconductor electrode, Nature, 1972, vol. 238, no. 5358, pp. 37–38. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  5. Ong, C.B., Ng, L.Y., and Mohammad, A.W., A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renewable Sustainable Energy Rev., 2018, vol. 81, pp. 536–551. https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  6. Xu, J., Huang, Y., Zhu, S., Abbes, N., Jing, X., and Zhang, L., A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles, J. Eng. Fibers Fabr., 2021, vol. 16, p. 15589250211046242. https://doi.org/10.1177/15589250211046242

    Article  CAS  Google Scholar 

  7. Zeghoud, S., Hemmami, H., Seghir, B.B., Amor, I.B., Kouadri, I., Rebiai, A., Messaoudi, M., Ahmed, S., Pohl, P., and Simal-Gandara, J., A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications, Mater. Today Commun., 2022, vol. 33, p. 104747. https://doi.org/10.1016/j.mtcomm.2022.10

    Article  CAS  Google Scholar 

  8. Habtamu, F., Berhanu, S., and Mender, T., Polyaniline supported Ag-doped ZnO nanocomposite: Synthesis, characterization, and kinetics study for photocatalytic degradation of malachite Green, J. Chem., 2021, vol. 2021, pp. 1–12. https://doi.org/10.1155/2021/2451836

    Article  CAS  Google Scholar 

  9. Ahmad, K.S. and Jaffri, S.B., Phytosynthetic Ag doped ZnO nanoparticles: Semiconducting green remediators: Photocatalytic and antimicrobial potential of green nanoparticles, Open Chem., 2018, vol. 16, no. 1, pp. 556–570. https://doi.org/10.1515/chem-2018-0060

    Article  CAS  Google Scholar 

  10. Rohith, N.M., Kathirvel, P., Saravanakumar, S., and Mohan, L., Influence of Ag doping on the structural, optical, morphological and conductivity characteristics of ZnO nanorods, Optik, 2018, vol. 172, pp. 940–952. https://doi.org/10.1016/j.ijleo.2018.07.045

    Article  CAS  Google Scholar 

  11. Samoilova, N.A., Krayukhina, M.A., Korlyukov, A.A., Klemenkova, Z.S., Naumkin, A.V., and Mezhuev, Y.O., One-pot synthesis of colloidal hybrid Au (Ag)/ZnO nanostructures with the participation of maleic acid copolymers, Polymers, 2023, vol. 15, no. 7, p. 1670. https://doi.org/10.3390/polym15071670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boutalbi, A., Mohammed, H.A., Meneceur, S., Eddine, L.S., Abdullah, J.A.A., Alharthi, F., and Hasan, G.G., Photocatalytic dye degradation efficiency and reusability of potassium polyacrylate hydrogel loaded Ag@ZnO nanocomposite, Transition Met. Chem., 2023, pp. 1–11. https://doi.org/10.1007/s11243-023-00548-5

  13. Nadargi, D.Y., Nadargi, J.D., Tamboli, M.S., et al., Green synthesis of GO-loaded Ag/ZnO nanocomposites for methyl orange degradation, J. Mater. Sci.: Mater. Electron., 2023, vol. 34, no. 21, p. 1568. https://doi.org/10.1007/s10854-023-10979-6

    Article  CAS  Google Scholar 

  14. Bhosale, A., Kadam, J., Gade, T., Sonawane, K., and Garadkar, K., Efficient photodegradation of methyl orange and bactericidal activity of Ag doped ZnO nanoparticles, J. Indian Chem. Soc., 2023, vol. 100, no. 2, p. 100920. https://doi.org/10.1098/rsos.181764

    Article  CAS  Google Scholar 

  15. Tran, T.N.A., Tran, T.H., Nguyen, V.T., and Pham, N.H., Characteristics of Ag-doped ZnO thin films prepared by sputtering method, VNU Journal of Science: Mathematics-Physics, 2019, vol. 35, no. 4, pp. 87–92. https://doi.org/10.25073/2588-1124/vnumap.4365

    Article  Google Scholar 

  16. Kermiche, F., Taabouche, A., Hanini, F., Menakh, S., Bouabellou, A., Bouachiba, Y., Kerdja, T., Benazzouz, C., Bouafia, M., and Amara, S., Properties of Al-doped ZnO thin films grown by pulsed laser deposition on Si (100) substrates, Int. J. Nanopart., 2013, vol. 6, nos. 2–3, pp. 93–102. https://doi.org/10.1504/IJNP.2013.054984

    Article  CAS  Google Scholar 

  17. Xu, M., Chen, Y., Hu, W.Y., Liu, Y.T., Zhang, Q.P., Yuan, H., Wang, X.Y., Zhang, J.X., Luo, K.Y., Li, J., and Xiong, G., Designed synthesis of microstructure and defect- controlled Cu-doped ZnO−Ag nanoparticles: Exploring high-efficiency sunlight-driven photocatalysts, J. Phys. D: Appl. Phys., 2020, vol. 53, no. 2, p. 025106. https://doi.org/10.1088/1361-6463/ab4bfd

    Article  CAS  Google Scholar 

  18. Rauwel, P., Küünal S., Ferdov, S., and Rauwel, E., A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM, Adv. Mater. Sci. Eng., 2015, vol. 2015, pp. 1–9. https://doi.org/10.1155/2015/682749

    Article  Google Scholar 

  19. Madhumitha, G., Fowsiya, J., Gupta, N., Kumar, A., and Singh, M., Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel-mediated ZnO nanoparticles, J. Phys. Chem. Solids, 2019, vol. 127, pp. 43–51. https://doi.org/10.1016/j.jpcs.2018.12.005

    Article  CAS  Google Scholar 

  20. Anupama, N. and Madhumitha, G., Green synthesis and catalytic application of silver nanoparticles using Carissa carandas fruits, Inorg. Nano-Met. Chem., 2017, vol. 47, no. 1, pp. 116–120. https://doi.org/10.1080/15533174.2016.1149731

    Article  CAS  Google Scholar 

  21. Elango, G. and Roopan, S.M., Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles, Spectrochim. Acta, Part A, 2015, vol. 139, pp. 367–373. https://doi.org/10.1016/j.saa.2014.12.066

    Article  CAS  Google Scholar 

  22. Roopan, S.M., Madhumitha, G., Rahuman, A.A., Kamaraj, C., Bharathi, A., and Surendra, T.V., Low cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity, Ind. Crops Prod., 2013, vol. 43, no. 1, pp 631–635. https://doi.org/10.1016/j.indcrop.2012.08.013

    Article  CAS  Google Scholar 

  23. Rani, M., Yadav, J., Shanker, U., and Sillanpää, M., Green synthesized zinc derived nanocomposites with enhanced photocatalytic activity: An updated review on structural modification, scientific assessment and environmental applications, Inorg. Chem. Commun., 2023, vol. 147, p. 110246. https://doi.org/10.1016/j.inoche.2022.110246

    Article  CAS  Google Scholar 

  24. Hosseini, S.M., Sarsari, I.A., Kameli, P., and Salamati, H., Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles, J. Alloys Compd., 2015, vol. 640, pp. 408–415. https://doi.org/10.1016/j.jallcom.2015.03.136

    Article  CAS  Google Scholar 

  25. Kumar, S., Singh, V., and Tanwar, A., Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles, J. Mater. Sci.: Mater. Electron., 2016, vol. 27, pp. 2166–2173. https://doi.org/10.1007/s10854-015-4227-1

    Article  CAS  Google Scholar 

  26. Touam, T., Boudjouan, F., Chelouche, A., Khodja, S., Dehimi, M., Djouadi, D., Solard, J., Fischer, A., and Boudrioua, A., Effect of silver doping on the structural, morphological, optical and electrical properties of sol-gel deposited nanostructured ZnO thin films, Optik, 2015, vol. 126, no. 24, pp. 5548–5552. https://doi.org/10.1016/j.ijleo.2015.09.066

    Article  CAS  Google Scholar 

  27. Ai, T., Fan, Y., Wang, H., Zou, X., Bao, W., Deng, Z., Zhao, Z., Li, M., Kou, L., Feng, X., and Li, M., Microstructure and properties of Ag-doped ZnO grown hydrothermally on a graphene-coated polyethylene terephthalate bilayer flexible substrate, Front. Chem., 2021, vol. 9, p. 661127. https://doi.org/10.3389/fchem.2021.661127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sahu, D., Acharya, B.S., and Panda, A.K., Role of Ag ions on the structural evolution of nano ZnO clusters synthesized through ultrasonication and their optical properties, Ultrason. Sonochem., 2011, vol. 18, no. 2, pp. 601–607. https://doi.org/10.1016/j.ultsonch.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  29. Velgosová, O., Mražíková, A., and Marcinčáková, R., Influence of pH on green synthesis of Ag nanoparticles, Mater. Lett., 2016, vol. 180, pp. 336–339. https://doi.org/10.1016/j.matlet.2016.04.045

    Article  CAS  Google Scholar 

  30. Reyes, D.F., Cabrera, G.F.S., Mata, S.M.V., San Pedro, J.P.D., Palioc, J.C.C., and Tandingan, G.S., Effect of pH on size and concentration of silver nanoparticles synthesized using Ixora coccinea Linn. Leaf Extracts, Orient. J. Chem., 2020, vol. 36, no. 6, p. 1103. https://doi.org/10.13005/ojc/360612

    Article  CAS  Google Scholar 

  31. Li, Y.F. and Liu, Z.P., Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings, J. Am. Chem. Soc., 2011, vol. 133, no. 39, pp. 15743–15752. https://doi.org/10.1021/ja206153v

    Article  CAS  PubMed  Google Scholar 

  32. Cao, S., Tao, F.F., Tang, Y., Li, Y., and Yu, J., Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalyst, Chem. Soc. Rev., 2016, vol. 45, no. 17, pp. 4747–4765. https://doi.org/10.1039/C6CS00094K

    Article  CAS  PubMed  Google Scholar 

  33. Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., and Jurga, S., ZnO size and shape effect on antibacterial activity and cytotoxicity profile, Sci. Rep., 2022, vol. 12, no. 1, p. 8148. https://doi.org/10.1038/s41598-022-12134-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhatia, D., Mittal, A., and Malik, D.K., Antimicrobial potential and in vitro cytotoxicity study of polyvinyl pyrollidone-stabilised silver nanoparticles synthesised from Lysinibacillus boronitolerans, IET Nanobiotechnol., 2021, vol. 15, no. 4, pp. 427–440. https://doi.org/10.1049/nbt2.12054

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fan, X., Yahia, L.H., and Sacher, E., Antimicrobial properties of the Ag, Cu nanoparticle system, Biology, 2021, vol. 10, no. 2, p. 137. https://doi.org/10.3390/biology10020137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal, M., Omer, M., Alamzeb, M., Salman, S.M., and Ali, S., Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach, Int. J. Nanomed., 2019, vol. 14, pp. 5087–5107. https://doi.org/10.2147/IJN.S200254

    Article  CAS  Google Scholar 

  37. Aswathi, V.P., Meera, S., Maria, C.A., and Nidhin, M., Green synthesis of nanoparticles from biodegradable waste extracts and their applications: A critical review, Nanotechnol. Environ. Eng., 2023, vol. 8, no. 2, pp. 377–397. https://doi.org/10.1007/s41204-022-00276-8

    Article  CAS  Google Scholar 

  38. Chakraborty, N., Banerjee, J., Chakraborty, P., Banerjee, A., Chanda, S., Ray, K., Acharya, K., and Sarkar, J., Green synthesis of copper/copper oxide nanoparticles and their applications: A review, Green Chem. Lett. Rev., 2022, vol. 15, no. 1, pp. 185–213. https://doi.org/10.1080/17518253.2022.2025916

    Article  CAS  Google Scholar 

  39. Ranjithkumar, B., Kumar, E.R., Srinivas, M., et al., Evaluation of structural, surface morphological and thermal properties of Ag-doped Zn nanoparticles for antimicrobial activities, Phys. E., 2021, vol. 133, p. 114801. https://doi.org/10.1016/j.physe.2021.114801

    Article  CAS  Google Scholar 

  40. Verma, R., Chauhan, A., Shandilya, M., Li, X., Kumar, R., and Kulshrestha, S., Antimicrobial potential of Ag-doped ZnO nanostructure synthesized by the green method using Moringa oleifera extract, J. Environ. Chem. Eng., 2020, vol. 8, no. 3, p. 103730. https://doi.org/10.1016/j.jece.2020.103730

    Article  CAS  Google Scholar 

  41. Pandiyan, N., Murugesan, B., Arumugam, M., Sonamuthu, J., Samayanan, S., and Mahalingam, S., Ionic liquid—A greener templating agent with Justicia adhatoda plant extract assistedgreensynthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities, J. Photochem. Photobiol., B, 2019, vol. 198, p. 111559. https://doi.org/10.1016/j.jphotobiol.2019.111559

    Article  CAS  PubMed  Google Scholar 

  42. Jaffri, S.B. and Ahmad, K.S., Foliar-mediated Ag:ZnO nanophotocatalysts: Green synthesis, characterization, pollutants degradation, and in vitro biocidal activity, Green Process. Synth., 2019, vol. 8, no. 1, pp. 172–182. https://doi.org/10.1515/gps-2018-0058

    Article  CAS  Google Scholar 

  43. Ibrahim, M.I., Alsafadi, D., Alamry, K.A., Oves, M., Alosaimi, A.M., and Hussein, M.A., A promising antimicrobial bionanocomposite based poly (3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced silver doped zinc oxide nanoparticles, Sci. Rep., 2022, vol. 12, no. 1, p. 14299. https://doi.org/10.1038/s41598-022-17470-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Basavalingiah, K.R. and Harishkumar, S., Udayabhanu, Nagaraju, G., Rangappa, D., and Chikkahanumantharayappa, Highly porous honeycomb like Ag/ZnO nanomaterials for enhanced photocatalytic and photoluminescence studies: Green synthesis using Azadirachta indica gum, SN Appl. Sci., 2019, vol. 1, no. 8, pp. 1–13. https://doi.org/10.1007/s42452-019-0863-z

    Article  CAS  Google Scholar 

  45. Farooq, M., Shujah, S., Tahir, K., et al., Ultra efficient 4-nitrophenol reduction, dye degradation and Cr (VI) adsorption in the presence of phytochemical synthesized Ag/ZnO nanocomposite: A view towards sustainable chemistry, Inorg. Chem. Commun., 2022, vol. 136, p. 109189. https://doi.org/10.1016/j.inoche.2021.109189

    Article  CAS  Google Scholar 

  46. Koe, W.S., Lee, J.W., Chong, W.C., Pang, Y.L., and Sim, L.C., An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane, Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 2522–2565. https://doi.org/10.1007/s11356-019-07193-5

    Article  CAS  Google Scholar 

  47. Li, X., Xie, J., Jiang, C., Yu, J., and Zhang, P., Review on design and evaluation of environmental photocatalysts, Front. Environ. Sci. Eng., 2018, vol. 12, pp. 1–32. https://doi.org/10.1007/s11783-018-1076-1

    Article  CAS  Google Scholar 

  48. Singh, R., Barman, P.B., and Sharma, D., Synthesis, structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic properties by photo degradation of organic dyes, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, pp. 5705–5717. https://doi.org/10.1007/s10854-016-6242-2

    Article  CAS  Google Scholar 

  49. Adhikari, S., Banerjee, A., Eswar, N.K., Sarkar, D., and Madras, G., Photocatalytic inactivation of E. Coli by ZnO–Ag nanoparticles under solar radiation, RSC Adv., 2021, vol. 5, no. 63, pp. 51067–51077. https://doi.org/10.1039/C5RA06406F

    Article  CAS  Google Scholar 

  50. Chauhan, A., Verma, R., Kumari, S., et al., Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract, Sci. Rep., 2020, vol. 10, no. 1, p. 7881. https://doi.org/10.1038/s41598-020-64419-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abbas, A.M., Abid, M.A., Abbas, K.N., Aziz, W.J., and Salim, A.A., Photocatalytic activity of Ag/ZnO nanocomposites integrated essential ginger oil fabricated by green synthesis method, J. Phys.: Conf. Ser., 2021, vol. 1892, no. 1, p. 012005. https://doi.org/10.1088/1742-6596/1892/1/012005

    Article  CAS  Google Scholar 

  52. Chan, Y.Y., Pang, Y.L., Lim, S., Lai, C.W., Abdullah, A.Z., and Chong, W.C., Biosynthesized Fe- and Ag-doped ZnO nanoparticles using aqueous extract of Clitoria ternatea Linn. for enhancement of sonocatalytic degradation of Congo red, Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 34675–34691. https://doi.org/10.1007/s11356-019-06583-z

    Article  CAS  Google Scholar 

  53. Nethravathi, P.C. and Suresh, D., Silver-doped ZnO embedded reduced graphene oxide hybrid nanostructured composites for superior photocatalytic hydrogen generation, dye degradation, nitrite sensing and antioxidant activities, Inorg. Chem. Commun., 2021, vol. 134, p. 109051. https://doi.org/10.1016/j.inoche.2021.109051

    Article  CAS  Google Scholar 

  54. Jarvin, M., Kumar, S.A., Rosaline, D.R., Foletto, E.L., Dotto, G.L., and Inbanathan, S.S.R., Remarkable sunlight-driven photocatalytic performance of Ag-doped ZnO nanoparticles prepared by green synthesis for degradation of emerging pollutants in water, Environ. Sci. Pollut. Res., 2022, vol. 29, no. 38, pp. 57330–57344. https://doi.org/10.1007/s11356-022-19796-6

    Article  CAS  Google Scholar 

  55. Sabouri, Z., Sabouri, S., Tabrizi, Hafez., Moghaddas, S.S., Mostafapour, A., Amiri, M.S., and Darroudi, M., Facile green synthesis of Ag-doped ZnO/CaO nanocomposites with Caccinia macranthera seed extract and assessment of their cytotoxicity, antibacterial, and photocatalytic activity, Bioprocess Biosyst. Eng., 2022, vol. 45, no. 11, pp. 1799–1809. https://doi.org/10.1007/s00449-022-02786-w

    Article  CAS  PubMed  Google Scholar 

  56. Wang, L., Hu, C., and Shao, L., The antimicrobial activity of nanoparticles present situation and prospects for the future, Int. J. Nanomed., 2017, vol. 12, pp. 1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  57. Dakal, T.C., Kumar, A., Majumdar, R.S., and Yadav, V., Mechanistic basis of antimicrobial actions of silver nanoparticles, Front. Microbiol., 2016, vol. 7, p. 1831. https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  58. Slavin, Y.N., Asnis, J., Hnfeli, U.O., and Bach, H., Metal nanoparticles: Understanding the mechanisms behind antibacterial activity, J. Nanobiotechnol., 2017, vol. 15, pp. 1–20. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  59. Babu, A.T. and Antony, R., Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics, J. Environ. Chem. Eng., 2019, vol. 7, p. 102840. https://doi.org/10.1016/j.jece.2018.102840

    Article  CAS  Google Scholar 

  60. Akbarizadeh, M.R., Sarani, M., and Darijani, S., Study of antibacterial performance of biosynthesized pure and Ag-doped ZnO nanoparticles, Rend. Fis. Acc. Lincei, 2022, vol. 33, no. 3, pp. 613–621. https://doi.org/10.1007/s12210-022-01079-4

    Article  Google Scholar 

  61. Hojjati-Najafabadi, A., Davar, F., Enteshari, Z., and Hosseini-Koupaei, M., Antibacterial and photocatalytic behaviour of green synthesis of Zn0.95Ag0.05O nanoparticles using herbal medicine extract, Ceram. Int., vol. 47, no. 22, pp. 31617–31624. https://doi.org/10.1016/j.ceramint.2021.08.042

  62. Iqbal, Y., Malik, A.R., Iqbal, T., Aziz, M.H., Ahmed, F., Abolaban, F.A., Ali, S.M., and Ullah, H., Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities, Mater. Lett., 2021, vol. 305, p. 130671. https://doi.org/10.1016/j.matlet.2021.130671

    Article  CAS  Google Scholar 

  63. Sharma, M., Bassi, H., Chauhan, P., Thakur, P., Chauhan, A., Kumar, R., Kollarigowda, R.H., and Thakur, N.K., Inhibition of the bacterial growth as a consequence of synergism of Ag and ZnO: Calendula officinalis mediated green approach for nanoparticles and impact of altitude, Inorg. Chem. Commun., 2022, vol. 136, p. 109131. https://doi.org/10.1016/j.inoche.2021.109131

    Article  CAS  Google Scholar 

  64. Xiong, P., Huang, X., Ye, N., Lu, Q., Zhang, G., Peng, S., Wang, H., and Liu, Y., Cytotoxicity of metal-based nanoparticles: From mechanisms and methods of evaluation to pathological manifestations, Adv. Sci., 2022, vol. 9, no. 16, p. 2106049. https://doi.org/10.1002/advs.202106049

    Article  CAS  Google Scholar 

  65. Ahamed, M., AlSalhi, M.S., and Siddiqui, M.K.J., Sil-ver nanoparticle applications and human health, Cl-inica Chimica Acta, 2010, vol. 411, nos. 23–24, pp. 1841–1848. https://doi.org/10.1016/j.cca.2010.08.016

    Article  CAS  Google Scholar 

  66. Pulskamp, K., Diabate, S., and Krug, H.F., Carbon nanotubes show no sign of acute toxicity butinduce intracellular reactive oxygen speciesin dependence on contaminants, Toxicol. Lett., 2007, vol. 168, no. 1, pp. 58–74. https://doi.org/10.1016/j.toxlet.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Y., Ali, S.F., Dervishi, E., Xu, Y., Li, Z., Casciano, D., and Biris, A.S., Cytotoxicity effects of graphene and nanotubes, single wall carbon, phaeochromocytoma-derived PC12 cells, ACS Nano, 2010, vol. 4, no. 6, pp. 3181–3186. https://doi.org/10.1021/nn1007176

    Article  CAS  PubMed  Google Scholar 

  68. Khan, M., Naqvi, A.H., and Ahmad, M., Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles, Toxicol. Rep., 2015, vol. 2, pp. 765–774. https://doi.org/10.1016/j.toxrep.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berehu, H.M., Khan, M.I., Chakraborty, R., Lavudi, K., Penchalaneni, J., Mohapatra, B., Mishra, A., and Patnaik, S., Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from Swertia chirayita leaf extract on colorectal cancer cells, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 788527. https://doi.org/10.3389/fbioe.2021.788527

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., and Maqbool, M., Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution, J. Ind. Eng. Chem., 2021, vol. 97, pp. 111–128. https://doi.org/10.1016/j.jiec.2021.02.017

    Article  CAS  Google Scholar 

  71. Hamidian, K., Sarani, M., Sheikhi, E., and Khatami, M., Cytotoxicity evaluation of green synthesized ZnO and Ag-doped ZnO nanoparticles on brain glioblastoma cells, J. Mol. Struct., 2022, vol. 1251, p. 131962. https://doi.org/10.1016/j.molstruc.2021.131962

    Article  CAS  Google Scholar 

  72. Hamidian, K., Sarani, M., Barani, M., and Khakbaz, F., Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells, Arabian J. Chem., 2022, vol. 15, no. 5, p. 103792. https://doi.org/10.1016/j.arabjc.2022.103792

    Article  CAS  Google Scholar 

  73. Shreema, K., Mathammal, R., Kalaiselvi, V., Vijayakumar, S., Selvakumar, K., and Senthil, K., Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifolia and its antioxidant potential, Mater. Today: Proc., 2021, vol. 47, pp. 2126–2131. https://doi.org/10.1016/j.matpr.2021.04.627

    Article  CAS  Google Scholar 

  74. Alkaladi, A., Abdelazim, A.M., and Afifi, M., Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats, Int. J. Mol. Sci., 2014, vol. 15, no. 2, pp. 2015–2023. https://doi.org/10.3390/ijms15022015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Umrani, R.D. and Paknikar, K.M., Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats, Nanomedicine, 2014, vol. 9, no.1, pp. 89–104. https://doi.org/10.2217/nnm.12.205

    Article  CAS  PubMed  Google Scholar 

  76. Wang, C., Yin, L., Zhang, L., Xiang, D., and Gao, R., Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 2010, vol. 10, no. 3, pp. 2088–2106. https://doi.org/10.3390/s100302088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, D., Ma, X.L., Gu, Y., Huang, H., and Zhang, G.W., Green synthesis of metallic nanoparticles and their potential applications to treat cancer, Front. Chem., 2020, vol. 8, pp. 1–18. https://doi.org/10.3389/fchem.2020.00799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sabouri, Z., Sabouri, S., Moghaddas, S.S.T.H., Mostafapour, A., Gheibihayat, S.M., and Darroudi, M., Plant-based synthesis of Ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb2+ ions, Biomass Convers. Biorefin., 2022, pp. 1–13. https://doi.org/10.1007/s13399-022-02907-1

  79. Vinay, S.P. and Chandrasekhar, N., Structural and bi-ological investigation of green synthesizedsilverandzincoxidenanoparticles, J. Inorg. Organomet. Polym., 2021, vol. 31, no. 2, pp. 552–558. https://doi.org/10.1007/s10904-020-01727-y

    Article  CAS  Google Scholar 

  80. Chan, Y.Y., Pang, Y.L., Lim, S., Lai, C.W., and Abdullah, A.Z., Plant based- biosynthesized silver doped zinc oxide for effective sonocatalytic degradation of malachite green: Characterizations and optimization studies, Desalin. Water Treat., 2022, vol. 245, pp. 270–285. https://doi.org/10.5004/dwt.2022.27951

    Article  CAS  Google Scholar 

  81. Gurgur, E., Oluyamo, S.S., Adetuyi, A.O., Omotunde, O.I., and Okoronkwo, A.E., Green synthesis of zinc oxide nanoparticles and zinc oxide−silver, zinc oxide-copper nanocomposites using Bridelia ferruginea as biotemplate, SN Appl. Sci., 2020, vol. 2, pp. 1–12. https://doi.org/10.1007/s42452-020-2269-3

    Article  CAS  Google Scholar 

  82. Jafarirad, S., Hammami Torghabe, E., Rasta, S.H., and Salehi, R., A novel non-invasive strategy for low-level laser-induced cancer therapy by using new Ag/ZnO and Nd/ZnO functionalized reduced graphene oxide nanocomposites, artificial cells, Nanomed. Biotechnol., 2018, vol. 46, no. 2, pp. 800–816. https://doi.org/10.1080/21691401.2018.1470523

    Article  CAS  Google Scholar 

  83. Khatir, N.M. and Sabbagh, F., Green facile synthesis of silver-doped zinc oxide nanoparticles and evaluation of their effect on drug release, Materials, 2022, vol. 15, no. 16, p. 5536. https://doi.org/10.3390/ma15165536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ying, S., Guan, Z., Ofoegbu, P.C., Clubb, P., Rico, C., and He, F., Green synthesis of nanoparticles: Current developments and limitations, Environ. Technol. Innovation, 2022, vol. 26, p. 102336. https://doi.org/10.1016/j.eti.2022.102336

    Article  CAS  Google Scholar 

  85. Turunc, E., Binzet, R., Gumus, I., Binzet, G., and Arslan, H., Green synthesis of silver and palladium nanoparticles using Lithodorahispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide, Materials Chemistry and Physics, 2017, vol. 202, pp. 310–319. https://doi.org/10.1016/j.matchemphys.2017.09.032

    Article  CAS  Google Scholar 

  86. Sana, S.S. and Dogiparthi, L.K., Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity, M-ater. Lett., 2018, vol. 226, pp. 47–51. https://doi.org/10.1016/j.matlet.2018.05.009

    Article  CAS  Google Scholar 

  87. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., and Sreedhar, B., Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity, Mater. Sci. Eng., C, 2016, vol. 58, pp. 36–43. https://doi.org/10.1016/j.msec.2015.08.018

    Article  CAS  Google Scholar 

  88. Muthuvel, A., Jothibas, M., and Manoharan, C., Synthesis of copper oxide nanoparticles by chemical and biogenic methods: Photocatalytic degradation and in vitro antioxidant activity, Nanotechnol. Environ. Eng., 2020, vol. 5, pp. 1–19. https://doi.org/10.1007/s41204-020-00078-w

    Article  CAS  Google Scholar 

  89. Kora, A.J. and Rastogi, L., Catalytic degradation of anthropogenic dye pollutants using palladium nanoparticles synthesized by gum olibanum, aglucuronoarabinogalactan biopolymer, Ind. Crops Prod., 2016, vol. 81, pp. 1–10. https://doi.org/10.1016/j.indcrop.2015.11.055

    Article  CAS  Google Scholar 

  90. Chahardoli, A., Karimi, N., and Fattahi, A., Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy, Adv. Powder Technol., 2018, vol. 29, no. 1, pp. 202–210. https://doi.org/10.1016/j.apt.2017.11.003

    Article  CAS  Google Scholar 

  91. Turakhia, B., Turakhia, P., and Shah, S., Green synthesis of zero valent iron nanoparticles from Spinacia oleracea (spinach) and its application in waste water treatment, J. Adv. Res. Appl. Sci., 2018, vol. 5, no. 1, pp. 46–51.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of Vellore Institute of technology on providing us the Access over journals and work space accommodation.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of idea for article was done by Venkatesan Jagadeeswar. The literature survey and data analysis were performed by Venkatesan Jagadeeswar & Vijayan Dhinesh. Drafting, tabulating and pictures was drafted by Venkatesan Jagadeeswar & Vijayan Dhinesh. Final manuscript editing and supervision over the work was done by E. James Jebaseelan Samuel, Selvaraj Mohana Roopan.

Corresponding authors

Correspondence to S. Mohana Roopan or E. James Jabaseelan Samuel.

Ethics declarations

Disclosure statement. All the authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

V. Jagadeeswar, Dhinesh, V., Roopan, S.M. et al. Plant Extract-Mediated Synthesis of Ag-Doped ZnO: Eco-Friendly Nanomaterial for Environmental Restoration, Microbial Inhibition, Cell Toxicity, Antioxidant Potential, and Sensing. Colloid J 85, 827–845 (2023). https://doi.org/10.1134/S1061933X23600513

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600513

Keywords:

Navigation