Skip to main content
Log in

Random colorings in manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We develop a general method for constructing random manifolds and sub-manifolds in arbitrary dimensions. The method is based on associating colors to the vertices of a triangulated manifold, as in recent work for curves in 3-dimensional space by Sheffield and Yadin (2014). We determine conditions on which submanifolds can arise, in terms of Stiefel–Whitney classes and other properties. We then consider the random submanifolds that arise from randomly coloring the vertices. Since this model generates submanifolds, it allows for studying properties and using tools that are not available in processes that produce general random subcomplexes. The case of 3 colors in a triangulated 3-ball gives rise to random knots and links. In this setting, we answer a question raised by de Crouy-Chanel and Simon (2019), showing that the probability of generating an unknot decays exponentially. In the general case of k colors in d-dimensional manifolds, we investigate the random submanifolds of different codimensions, as the number of vertices in the triangulation grows. We compute the expected Euler characteristic, and discuss relations to homological percolation and other topological properties. Finally, we explore a method to search for solutions to topological problems by generating random submanifolds. We describe computer experiments that search for a low-genus surface in the 4-dimensional ball whose boundary is a given knot in the 3-dimensional sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Armentano, J.-M. Azaïs, F. Dalmao and J. Leon, Asymptotic variance of the number of real roots of random polynomial systems, Proceedings of the American Mathematical Society 146 (2018), 5437–5449.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. J. Adler, O. Bobrowski, M. S. Borman, E. Subag and S. Weinberger, Persistent homology for random fields and complexes, in Borrowing Strength: Theory Powering Applications–a Festschrift for Lawrence D. Brown, Institute of Mathematical Statistics Collections, Vol. 6, Institute of Mathematical Statistics, Beachwood, OH, 2010, pp. 124–143.

    Chapter  Google Scholar 

  3. M. Aizenman, J. Chayes, L. Chayes, J. Fröhlich and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces, Communications in Mathematical Physics 92 (1983), 19–69.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Ashton, J. Cantarella, H. Chapman and T. Eddy, plCurve: Fast polygon library, http://www.jasoncantarella.com/wordpress/software/plcurve.

  5. R. J. Adler, The geometry of random fieldsPi, Classics in Applied Mathematics, Vol. 62, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1981.

    Google Scholar 

  6. E. Aarts and J. K. Lenstra, eds., Local Search in Combinatorial Optimization, Princeton University Press, Princeton, NJ, 2003.

    MATH  Google Scholar 

  7. C. Adams, R. Shinjo and K. Tanaka, Complementary regions of knot and link diagrams, Annals of Combinatorics 15 (2011), 549–563.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Monographs in Mathematics, Vol. 80, Springer, New York, 2007.

    MATH  Google Scholar 

  9. J. Arsuaga, M. Vazquez, P. McGuirk, S. Trigueros and J. Roca, DNA knots reveal a chiral organization of DNA in phage capsids, Proceedings of the National Academy of Sciences of the United States of America 102 (2005), 9165–9169.

    Article  Google Scholar 

  10. H. Baik, D. Bauer, I. Gekhtman, U. Hamenstaedt, S. Hensel, T. Kastenholz, B. Petri and D. Valenzuela, Exponential torsion growth for random 3-manifolds, International Mathematics Research Notices 2018 (2018), 6497–6534.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Beffara and D. Gayet, Percolation of random nodal lines, Publications mathematiques de l’Institut des Hautes Etudes Sicentifiques 126 (2017), 131–176.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Buoncristiano and D. Hacon, Characteristic numbers for unoriented Z-homology manifolds, Transactions of the American Mathematical Society 323 (1991), 651–663.

    MathSciNet  MATH  Google Scholar 

  13. M. Brittenham and S. Hermiller, The smooth 4-genus of (the rest of) the prime knots through 12 crossings, Journal of Knot Theory and its Ramifications 31 (2022), Article no. 2250081.

  14. R. Brooks and E. Makover, Random construction of Riemann surfaces, Journal of Differential Geometry 68 (2004), 121–157.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Bobrowski and P. Skraba, Homological percolation and the Euler characteristic, Physical Review E 101 (2020), 032304.

    Article  MathSciNet  Google Scholar 

  16. O. Bobrowski and P. Skraba, Homological percolation: The formation of giant k-cycles, International Mathematics Research Notices 2022 (2022), 6186–6213.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. M. Bradley, P. Strenski and J.-M. Debierre, Surfaces of percolation clusters in three dimensions, Physical Review B 44 (1991), 76–84.

    Article  Google Scholar 

  18. R. M. Bradley, P. Strenski and J.-M. Debierre, A growing self-avoiding walk in three dimensions and its relation to percolation, Physical Review A 45 (1992), 8513–8524.

    Article  Google Scholar 

  19. P. Bürgisser, Average Euler characteristic of random real algebraic varieties, Comptes Rendus Mathématique. Académie des Sciences. Paris 345 (2007), 507–512.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Cantarella, H. Chapman and M. Mastin, Knot probabilities in random diagrams, Journal of Physics A: Mathematical and Theoretical 49 (2016), Article no. 405001.

  21. M. Culler, N. M. Dunfield, M. Goerner and J. R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, http://snappy.computop.org.

  22. H. Chapman, Asymptotic laws for random knot diagrams, Journal of Physics A: Mathematical and Theoretical 50 (2017), Article no. 225001.

  23. S. Chmutov and B. Pittel, On a surface formed by randomly gluing together polygonal discs, Advances in Applied Mathematics 73 (2016), 23–42.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. de Crouy-Chanel and D. Simon, Random knots in 3-dimensional 3-colour percolation: Numerical results and conjectures, Journal of Statistical Physics (2019), 574–590.

  25. N. Dalton and C. Domb, Crystal statistics with long-range forces. II. Asymptotic behaviour of the equivalent neighbour model, Proceedings of the Physical Society 89 (1966), 873–892.

    Article  Google Scholar 

  26. C. Domb and N. Dalton, Crystal statistics with long-range forces. I. The equivalent neighbour model, Proceedings of the Physical Society 89 (1966), 859–872.

    Article  Google Scholar 

  27. M. Delbruck, Knotting problems in biology, in Mathematical Problems in the Biological Sciences, Proceedings of Symposia in Applied Mathematics. Vol. 14, Amereican Mathematical Society, Providence, RI, 1962, pp. 55–68. Information Center collection on computational molecular biology and genetics, 1961.

    Chapter  Google Scholar 

  28. Y. Diao, The knotting of equilateral polygons in3, Journal of Knot Theory and its Ramifications 4 (1995), 189–196.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Duncan, M. Kahle and B. Schweinhart, Homological percolation on a torus: plaquettes and permutohedra, https://arxiv.org/abs/2011.11903.

  30. Y. Diao, N. Pippenger and D. W. Sumners, On random knots, Journal of Knot Theory and its Ramifications 3 (1994), 419–429.

    Article  MathSciNet  MATH  Google Scholar 

  31. N. M. Dunfield and W. P. Thurston, Finite covers of random 3-manifolds, Inventiones mathematicae 166 (2006), 457–521.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Even-Zohar and M. Farber, Random surfaces with boundary, Discrete & Computational Geometry 66 (2021), 1463–1469.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Edelsbrunner and J. Harer, Persistent homology—a survey, in Surveys on Discrete and Computational Geometry Contemporary Mathematics, Vol. 453, American Mathematical Society, Providence, RI, 2008, pp. 257–282.

    Chapter  Google Scholar 

  34. C. Even-Zohar, J. Hass, N. Linial and T. Nowik, Invariants of random knots and links, Discrete & Computational Geometry 56 (2016), 274–314.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Even-Zohar, J. Hass, N. Linial and T. Nowik, The distribution of knots in the Petaluma model, Algebraic & Geometric Topology 18 (2018), 3647–3667.

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Even-Zohar, J. Hass, N. Linial and T. Nowik, Universal knot diagrams, Journal of Knot Theory and Its Ramifications 28 (2019), 1950031.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Even-Zohar, Models of random knots, Journal of Applied and Computational Topology 1 (2017), 263–296.

    Article  MathSciNet  MATH  Google Scholar 

  38. H. L. Frisch and E. Wasserman, Chemical topology, Journal of the American Chemical Society 83 (1961), 3789–3795.

    Article  Google Scholar 

  39. A. Gamburd, Poisson-Dirichlet distribution for random Belyi surfaces, Annals of Probability 34 (2006), 1827–1848.

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Grimmett and A. Holroyd, Plaquettes, spheres, and entanglement, Electronic Journal of Probability 15 (2010), 1415–1428.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. R. Grimmett, A. E. Holroyd and G. Kozma, Percolation of finite clusters and infinite surfaces, Mathematical Proceedings of the Cambridge Philosophical Society 156 (2014), 263–279.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Guth, H. Parlier and R. Young, Pants decompositions of random surfaces, Geometric and Functional Analysis 21 (2011), 1069–1090.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Gayet and J.-Y. Welschinger, Expected topology of random real algebraic submanifolds, Journal of the Institute of Mathematics of Jussieu 14 (2015), 673–702.

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Gayet and J.-Y. Welschinger, Universal components of random nodal sets, Communications in Mathematical Physics 347 (2016), 777–797.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Hindmarsh and K. Strobl, Statistical properties of strings, Nuclear Physics B 437 (1995), 471–488.

    Article  Google Scholar 

  46. J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Inventiones Mathematicae 85 (1986), 457–485.

    Article  MathSciNet  MATH  Google Scholar 

  47. G. R. Jerauld, L. E. Scriven and H. T. Davis, Percolation and conduction on the 3d voronoi and regular networks: a second case study in topological disorder, Journal of Physics C: Solid State Physics 17 (1984), 3429–3439.

    Article  Google Scholar 

  48. M. A. Kervaire, On higher dimensional knots, in Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton University Press, Princeton, NJ, 1965, pp. 105–109.

    Chapter  Google Scholar 

  49. P. Kirk and U. Koschorke, Generalized seifert surfaces and linking numbers, Topology and its Applications 42 (1991), 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Kahle and E. Meckes, Limit theorems for Betti numbers of random simplicial complexes, Homology, Homotopy and Applications 15 (2013), 343–374.

    Article  MathSciNet  MATH  Google Scholar 

  51. T. Letendre, Expected volume and Euler characteristic of random submanifolds, Journal of Functional Analysis 270 (2016), 3047–3110.

    Article  MathSciNet  MATH  Google Scholar 

  52. T. Letendre, Variance of the volume of random real algebraic submanifolds, Transactions of the American Mathematical Society 371 (2019), 4129–4192.

    Article  MathSciNet  MATH  Google Scholar 

  53. W. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Annals of Mathematics 76 (1962), 531–540.

    Article  MathSciNet  MATH  Google Scholar 

  54. C. Livingston and A. H. Moore, Knotinfo: Table of knot invariants, URL: knotinfo.math.indiana.edu.

  55. A. Lubotzky, J. Maher and C. Wu, Random methods in 3-manifold theory, Proceedings of the Steklov Institute of Mathematics 292 (2016), 118–142.

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Linial and T. Nowik, The expected genus of a random chord diagram, Discrete & Computational Geometry 45 (2011), 161–180.

    Article  MathSciNet  MATH  Google Scholar 

  57. C. D. Lorenz and R. M. Ziff, Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation, Journal of Physics A: Mathematical and General 31 (1998), 8147.

    Article  MATH  Google Scholar 

  58. J. Maher, Random Heegaard splittings, Journal of Topology 3 (2010), 997–1025.

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Maher, Random walks on the mapping class group, Duke Mathematical Journal 156 (2011), 429–468.

    Article  MathSciNet  MATH  Google Scholar 

  60. C. Micheletti, D. Marenduzzo, E. Orlandini and D. Sumners, Simulations of knotting in confined circular DNA, Biophysical journal 95 (2008), 3591–3599.

    Article  Google Scholar 

  61. F. Morgan, Geometric Measure Theory, Elsevier/Academic Press, Amsterdam, 2016.

    Book  MATH  Google Scholar 

  62. C. Manolescu and L. Piccirillo, From zero surgeries to candidates for exotic definite four-manifolds, https://arxiv.org/abs/2102.04391.

  63. J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Mathematics Studies, Vol. 76, Princeton University Press, Princeton, NJ, 1974.

    Book  MATH  Google Scholar 

  64. K. Nakamura, Trace Embeddings from Zero Surgery Homeomorphisms, https://arxiv.org/abs/2203.14270.

  65. A. Nahum and J. Chalker, Universal statistics of vortex lines, Physical Review E 85 (2012), 031141.

    Article  Google Scholar 

  66. B. Petri, Random regular graphs and the systole of a random surface, Journal of Topology 10 (2017), 211–267.

    Article  MathSciNet  MATH  Google Scholar 

  67. N. Pippenger, Knots in random walks, Discrete Applied Mathematics 25 (1989), 273–278.

    Article  MathSciNet  MATH  Google Scholar 

  68. S. S. Podkorytov, On the Euler characteristic of a random algebraic hypersurface, Zapiski Nauchnykh Seminarov POMI 252 (1998), 224–230.

    Google Scholar 

  69. B. Petri and J. Raimbault, A model for random three-manifolds, Commentarii Mathematici Helvetici 97 (2022), 729–768.

    Article  MathSciNet  MATH  Google Scholar 

  70. N. Pippenger and K. Schleich, Topological characteristics of random triangulated surfaces, Random Structures & Algorithms 28 (2006), 247–288.

    Article  MathSciNet  MATH  Google Scholar 

  71. B. Petri and C. Thäle, Poisson approximation of the length spectrum of random surfaces, Indiana University Mathematics Journal 67 (2018), 1115–1141.

    Article  MathSciNet  MATH  Google Scholar 

  72. I. Rivin, Statistics of random 3-manifolds occasionally fibering over the circle, https://arxiv.org/abs/1401.5736.

  73. J. H. Rubinstein and S. Tillmann, Multisections of piecewise linear manifolds, Indiana University Mathematics Journal 69 (2020), 2208–2238.

    Article  MathSciNet  MATH  Google Scholar 

  74. R. J. Scherrer and J. A. Frieman, Cosmic strings as random walks, Physical Review D 33 (1986), 3556.

    Article  Google Scholar 

  75. S. Shrestha, The topology and geometry of random square-tiled surfaces, Geometriae Dedicata 216 (2022), Article no. 38.

  76. C. Soteros, D. Sumners and S. Whittington, Entanglement complexity of graphs in Z3, Mathematical Proceedings of the Cambridge Philosophical Society 111 (1992), 75–91.

    Article  MathSciNet  MATH  Google Scholar 

  77. R. P. Stanley, An introduction to hyperplane arrangements, in Geometric Combinatorics, IAS/Park City Mathematics Serie, Vol. 13, American Mathematical Society, Providence, RI, 2004, pp. 389–496.

    Chapter  Google Scholar 

  78. D. Sumners and S. Whittington, Knots in self-avoiding walks, Journal of Physics A: Mathematical and General 21 (1988), 1689–1694.

    Article  MathSciNet  MATH  Google Scholar 

  79. S. Sheffield and A. Yadin, Tricolor percolation and random paths in 3D, Electronic Journal of Probability 19 (2014), Article no. 4.

  80. A. J. Taylor and other SPOCK contributors, pyknotid knot identification toolkit, https://github.com/SPOCKnots/pyknotid.

  81. A. J. Taylor and M. R. Dennis, Vortex knots in tangled quantum eigenfunctions, Nature communications 7 (2016), 1–6.

    Article  Google Scholar 

  82. R. Thom, Quelques propriétés globales des variétés différentiables, Commentarii Mathematici Helvetici 28 (1954), 17–86.

    Article  MathSciNet  MATH  Google Scholar 

  83. T. Vachaspati and A. Vilenkin, Formation and evolution of cosmic strings, Physical Review D 30 (1984), 2036–2045.

    Article  Google Scholar 

  84. A. H. Wallace, Modifications and cobounding manifolds, Canadian Journal of Mathematics 12 (1960), 503–528.

    Article  MathSciNet  MATH  Google Scholar 

  85. I. Wigman, On the expected betti numbers of the nodal set of random fields, Analysis & PDE 14 (2021), 1797–1816.

    Article  MathSciNet  MATH  Google Scholar 

  86. S. L. Witte, Link nomenclature, random grid diagrams, and Markov chain methods in knot theory, Ph.D. thesis, University of California, Davis, 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaim Even-Zohar.

Additional information

Dedicated to Nati Linial, our friend, colleague and teacher

This work was carried out in part while the first author was at the Alan Turing Institute, supported by Lloyds Register Foundation’s programme on Data-Centric Engineering. This work was carried out while the second author was visiting the Oxford Mathematical Institute and ISTA, and was a Christensen Fellow at St. Catherine’s College. The second author was partially supported by NSF grant DMS:FRG 1760485 and BSF grant 2018313. Most of the computational work was performed with the facilities of the School of Computer Science and Engineering at the Hebrew University of Jerusalem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Even-Zohar, C., Hass, J. Random colorings in manifolds. Isr. J. Math. 256, 153–211 (2023). https://doi.org/10.1007/s11856-023-2509-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2509-5

Navigation