Skip to main content
Log in

Attempting perfect hypergraphs

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study several extensions of the notion of perfect graphs to k-uniform hypergraphs. One main definition extends to hypergraphs the notion of perfect graphs based on coloring. Let G be a k-uniform hypergraph. A coloring of a k-uniform hypergraph G is proper if it is a coloring of the (k − 1)-tuples with elements in V(G) in such a way that no edge of G is a monochromatic \(K_k^{k - 1}\).

A k-uniform hypergraph G is Cω-perfect if for every induced subhypergraph G′ of G we have:

  • if XV(G′) with ∣X∣ < k − 1, then there is a proper (ω(G′) − k + 2)-coloring of G′ (so (k − 1)-tuples are colored) that restricts to a proper (ω(G′) − k + 2)-coloring of lkG(X) (so (k − ∣X∣ − 1)-tuples are colored).

Another main definition is the following: A k-uniform hypergraph G is hereditary perfect (or, briefly, H-perfect) if all links of sets of (k − 2) vertices are perfect graphs.

The notion of Cω perfectness is not closed under complementation (for k > 2) and we define G to be doubly perfect if both G and its complement are Cω perfect. We study doubly-perfect hypergraphs: In addition to perfect graphs nontrivial doubly-perfect graphs consist of a restricted interesting class of 3-uniform hypergraphs, and within this class we give a complete characterization of doubly-perfect H-perfect hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. Adiprasito, Toric chordality, Journal de Mathématiques Pures et Appliquées 108 (2017), 783–807.

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Adiprasito, E. Nevo and A. Samper, Higher chordality: from graphs to complexes, Proceedings of the American Mathematical Society 144 (2016), 3317–3329.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon, G. Kalai, J. Matousek and R. Meshulam, Transversal numbers for hypergraphs arising in geometry, Advances in Applied Mathematics 29 (2002), 79–101.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bujtás and Z. Tuza, C-perfect hypergraphs, Journal of Graph theory 64 (2009), 132–149.

    MathSciNet  MATH  Google Scholar 

  5. M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Annals of Mathematics 164 (2006), 51–229.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Csiszár, J. Körner, L. Lovász, K. Marton and G. Simonyi, Entropy splitting for antiblocking corners and perfect graphs, Combinatorica 10 (1990), 27–40.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Eckhoff, A survey of Hadwiger–Debrunner (p, q)-problem, in Discrete and Computational Geometry, Algorithms and Combinatorics, Vol. 25, Springer, Berlin, 2003, pp. 347–377.

    Chapter  Google Scholar 

  8. G. S. Gasparian, Minimal imperfect graphs: A simple approach, Combinatorica 16 (1996), 209–212.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. E. Goodman and H. Onishi, Even triangulations of S3 and the coloring of graphs, Transactions of the American Mathematical Society 246 (1978), 501–510.

    MathSciNet  MATH  Google Scholar 

  10. V. A. Gurvich, Some properties and applications of complete edge-chromatic graphs and hypergraphs, Soviet Mathematics. Doklady 30 (1984), 803–807.

    MATH  Google Scholar 

  11. H. Hadwiger and H. Debrunner, Über eine Variante zum Hellyschen Satz, Archiv der Mathematik 8 (1957), 309–313.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Joswig, Projectivities in simplicial complexes and colorings of simple polytopes, Mathematische Zeitschrift 240 (2002), 243–259.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Körner, Coding of an information source having ambiguous alphabet and the entropy of graphs, in Transactions of the sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Academia, Prague, 1973, pp. 411–425.

    Google Scholar 

  14. N. Linial, What is high-dimensional combinatorics, Lecture at Random-Approx, 2008, https://www.cs.huji.ac.il/~nati/PAPERS/random_approx_08.pdf.

  15. N. Linial, Challenges of high-dimensional combinatorics, Lecture at Laszlo Lovász 70th Birthday Conference, Budapest, 2018, https://www.cs.huji.ac.il/~nati/PAPERS/challenges-hdc.pdf.

  16. L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics 2 (1972), 253–267.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Nesetril and V. Rödl, A short proof of the existence of highly chromatic hypergraphs without short cycles, Journal of Combinatorial Theory. Series B 27 (1979), 225–227

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Scott and P. D. Seymour, A survey of χ-boundedness, Journal of Graph Theorey 95 (2020), 473–504.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. J. Seidel, A survey of two-graphs, in Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Vol. I, Atti dei Convegni Lincei, Vol. 17, Accademia Nazionale dei Lincei, Roma, 1976, pp. 481–511.

    Google Scholar 

  20. G. Simonyi, Entropy splitting hypergraphs, Journal of Combinatorial Theory. Series B 66 (1996), 310–323.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. I. Voloshin, On the upper chromatic number of a hypergraph, Australasian Journal of Combinatorics 11 (1995), 25–45.

    MathSciNet  MATH  Google Scholar 

  22. V. I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, Fields Institute Monograph, Vol. 17, American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  23. V. I. Voloshin, Introduction to Graph and Hypergraph Theory, Nova Science Publishers, New York, 2009.

    MATH  Google Scholar 

Download references

Acknowledgment

We are thankful to Gabor Simonyi, Vitaly Voloshin and an anonymous referee for helpful remarks. We thank the referee especially for detecting several mistakes in an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Kalai.

Additional information

Dedicated to Nati Linial and his vision of high dimensional combinatorics

This material is based upon work supported in part by the U. S. Army Research Office under grant number W911NF-16-1-0404, and supported by NSF grant DMS 1763817 and ERC advanced grant 320924.

Supported by ERC advanced grant 320924 and by ISF Grant 1612/17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudnovsky, M., Kalai, G. Attempting perfect hypergraphs. Isr. J. Math. 256, 133–151 (2023). https://doi.org/10.1007/s11856-023-2506-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2506-8

Navigation