Skip to main content
Log in

A new generation criterion theorem for \(C_0\)-semigroups implying a generalization of Kaiser–Weis–Batty’s perturbation theorem

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

By proving existence, regularity and uniqueness of solutions to Cauchy problems governed by abstract unbounded operators with finite pseudo-spectral bounds as an alternative and a serious enhancement of results by Melnikova and Filinkov, we establish a new generation criterion theorem for \(C_0\)-semigroups in general Banach spaces. A generalization of Kaiser–Weis–Batty’s perturbation generation theorem in reflexive Banach spaces is therefore derived. We apply our last theoretical result to a singular transport model in \(L^p\)-spaces, \(p\in ]1,+\infty [\), where the streaming (unperturbed) semigroup cannot be explicit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Rhandi, A.: Perturbations of positive semigroups. Arch. Math. 56, 107–119 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batty, C.J.K.: On a perturbation theorem of Kaiser and Weis. Semigroup Forum 70, 471–474 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boumhamdi, M., Latrach, K., Zeghal, A.: Existence results for a nonlinear version of Rotenberg model with infinite maturation velocities. Math. Methods Appl. Sci. 38, 1795–1807 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chabi, M., Latrach, K.: On singular mono-energetic transport equations in slab geometry. Math. Methods Appl. Sci. 25, 1121–1147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chabi, M., Latrach, K.: Singular one-dimensional transport equations on \(L^p\) spaces. J. Math. Anal. Appl. 283, 319–336 (2003)

  6. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  7. Greenberg, W., van der Mee, C., Protopopescu, V.: Boundary Value Problems in Abstract Kinetic Theory. Birkhäuser, Basel (1987)

    Book  MATH  Google Scholar 

  8. Kaiser, C., Weis, L.: A perturbation theorem for operator semigroups in Hilbert spaces. Semigroup Forum 67, 63–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics, vol. 132. Springer, Berlin (1995)

    Book  Google Scholar 

  10. Lods, B.: On linear kinetic equations involving unbounded cross-sections. Math. Methods Appl. Sci. 27, 1049–1075 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lods, B.: Semigroup generation properties of streaming operators with non-contractive boundary conditions. Math. Comput. Modell. 42, 1441–1462 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lumer, G., Phillips, R.S.: Dissipative operators in a Banach space. Pacif. J. Math. 11, 679–698 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Melnikova, I.V., Filinkov, A.: Abstract Cauchy Problems: Three Approaches, Monographs and Surveys in Pure and Applied Mathematics, vol. 120. Chapman and Hall/CRC, New York (2001)

    MATH  Google Scholar 

  14. Mokhtar-Kharroubi, M.: Mathematical Topics in Neutron Transport Theory: New Aspects, Series on Advances in Mathematics for Applied Sciences, vol. 46. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  15. Mokhtar-Kharroubi, M.: Optimal spectral theory of the linear Boltzmann equation. J. Funct. Anal. 226, 21–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

  17. Rotenberg, M.: Transport theory for growing cell populations. J. Theor. Biol. 103, 181–199 (1983)

    Article  MathSciNet  Google Scholar 

  18. Shi, D.-K., Feng, D.-X.: Characteristic conditions of the generation of \(C_0\) semigroups in a Hilbert space. J. Math. Anal. Appl. 247, 356–377 (2000)

  19. Voigt, J.: On the perturbation theory for strongly continuous semigroups. Math. Ann. 229, 163–17l (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Voigt, J.: On substochastic \(C_0\)-semigroups and their generators. Transp. Theory Stat. Phys. 16(4–6), 453–466 (1987)

    Article  MATH  Google Scholar 

  21. Weis, L.: The stability of positive semigroups on \(L_p\) spaces. Proc. Am. Math. Soc. 123, 3089–3094 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Megdiche.

Additional information

Communicated by Abdelaziz Rhandi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 4.3

Let put

$$\begin{aligned} \Delta _{\sigma (\cdot )}(\lambda ,v,v')={1\over (v-v')\lambda +[v\sigma (v')-v'\sigma (v)]},\ \lambda \in {{F_{-\sigma _0}}}\ \text { and }\ v,v'\in (0,+\infty ). \end{aligned}$$

Naturally, the proof is divided into the following four steps:

Step 1. For every \(\lambda \in {{F_{-\sigma _0}}}\) and \(\varphi \in \Lambda _{\sigma (\cdot ),p}\), we have

$$\begin{aligned}{} & {} e^{-{\lambda +\sigma (v)\over v}\,a}\, \int _0^a e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\, d\mu '\\{} & {} \quad = vv'\Delta _{\sigma (\cdot )}(\lambda ,v,v')\,\big [e^{-{\lambda +\sigma (v)\over v}\,a}-e^{-{\lambda +\sigma (v')\over v'}\,a}\big ].\end{aligned}$$

Further,

$$\begin{aligned}{} & {} \pi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi (a,v)=\displaystyle {f(v)\over v}\displaystyle \int _0^a d\mu '\, e^{-{\lambda +\sigma (v)\over v}\,(a-\mu ')}\\{} & {} \quad \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,e^{-{\lambda +\sigma (v')\over v'}\,\mu '}\,\varphi (0,v').\end{aligned}$$

Then, by applying Fubini’s theorem we get:

$$\begin{aligned}{} & {} \pi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi (a,v)\\{} & {} \quad =\displaystyle {f(v)\over v}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,\varphi (0,v')\,e^{-{\lambda +\sigma (v)\over v}\,a}\int _0^a d\mu '\, e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\\{} & {} \quad = \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,\varphi (0,v')\,{v'\Delta _{\sigma (\cdot )}(\lambda ,v,v')}\big [e^{-{\lambda +\sigma (v)\over v}\,a}-e^{-{\lambda +\sigma (v')\over v'}\,a}\big ]. \end{aligned}$$

Let put \(\pi _\lambda =\pi _{(\lambda ,\sigma (\cdot ))}\), \(Q_\lambda =Q_{(\lambda ,\sigma (\cdot ))}\) and notice that

$$\begin{aligned}{} & {} |\pi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi (a,v)|\\{} & {} \quad \le \pi _{(Re\lambda ,\sigma _{0})} {\mathbb {B}}_\varepsilon Q_{(Re\lambda ,\sigma _{0})} |\varphi |(a,v) \\{} & {} \quad \le 2\displaystyle \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,|\varphi (0,v')|\,{v'\Delta _{\sigma _0}(Re\lambda ,v,v')} \\{} & {} \quad \le 2 d^{1/q}\displaystyle \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, {g(v')\over \sigma (v')^{1/p}}\,\Lambda _\varepsilon (v,v')\,\sigma (v')^{1/p}|\varphi (0,v')|\,{v'}^{1/p}\Delta _{\sigma _0}(Re\lambda ,v,v'). \end{aligned}$$

This, by using Hölder’s inequality, implies that

$$\begin{aligned}{} & {} \Vert \pi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi \Vert _{\Lambda _{\sigma (\cdot ),p}}\\{} & {} \quad \le {2^{1/q}\,d^{(p+1)/p}\,\varepsilon ^{-1}\over Re\lambda +\sigma _0 }\,\Vert f(\cdot )\Vert _{L^\infty (0,+\infty )}\,\Vert \sigma (\cdot )_{|supp(f(\cdot ))}\Vert ^{1/p}_{L^\infty (0,+\infty )}\\{} & {} \quad \Vert {g(\cdot )\over \sigma (\cdot )^{1/p}}\Vert _{L^q(0,+\infty )} \,\Vert \varphi \Vert _{\Lambda _{\sigma (\cdot ),p}}, \end{aligned}$$

which ends the first step.

Step 2. For every \(\lambda \in {{F_{-\sigma _0}}}\) and \(\varphi \in {\mathbb {X}}_{\sigma (\cdot ),p}\) we have

$$\begin{aligned}{} & {} \displaystyle e^{{\lambda +\sigma (v')\over v'}\,\mu "}\,e^{-{\lambda +\sigma (v)\over v}\,a}\, \int _{\mu "}^a e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\, d\mu '\\{} & {} \quad \displaystyle = vv'\Delta _{\sigma (\cdot )}(\lambda ,v,v')\,\big [e^{-{\lambda +\sigma (v')\over v'}\,(a-\mu ")}-e^{-{\lambda +\sigma (v)\over v}\,(a-\mu ")}\big ]. \end{aligned}$$

Moreover,

$$\begin{aligned} \pi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi (a,v)= & {} \displaystyle {f(v)\over v}\displaystyle \!\int _0^a d\mu '\, e^{-{\lambda +\sigma (v)\over v}\,(a-\mu ')}\!\int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\\{} & {} \times \displaystyle {1\over v'}\!\int _0^{\mu '}d\mu "\,e^{-{\lambda +\sigma (v')\over v'}\,(\mu '-\mu ")}\,\varphi (\mu ",v'). \end{aligned}$$

This, by applying Fubini’s theorem, yields to

$$\begin{aligned}{} & {} \pi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi (a,v)=\displaystyle {f(v)\over v}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v'){1\over v'}\\{} & {} \qquad \times \displaystyle \int _0^{a}d\mu "\int _{\mu "}^a d\mu '\, e^{-{\lambda +\sigma (v)\over v}\,(a-\mu ')} \,e^{-{\lambda +\sigma (v')\over v'}\,(\mu '-\mu ")}\,\varphi (\mu ",v')\\{} & {} \quad =\displaystyle {f(v)\over v}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v'){1\over v'}\int _0^{a}d\mu " \,\varphi (\mu ",v')\\{} & {} \qquad \times \displaystyle e^{{\lambda +\sigma (v')\over v'}\,\mu "}\,e^{-{\lambda +\sigma (v)\over v}\,a}\int _{\mu "}^a d\mu '\, e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\\{} & {} \quad =\displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,\Delta _{\sigma (\cdot )}(\lambda ,v,v')\\{} & {} \qquad \times \displaystyle \int _0^{a}d\mu " \,\varphi (\mu ",v')\displaystyle \,\big [e^{-{\lambda +\sigma (v')\over v'}\,(a-\mu ")}-e^{-{\lambda +\sigma (v)\over v}\,(a-\mu ")}\big ]. \end{aligned}$$

Let put \(\Xi _\lambda =\Xi _{(\lambda ,\sigma (\cdot ))}\) and notice that

$$\begin{aligned}{} & {} |\pi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi (a,v)|\le \pi _{(Re\lambda ,\sigma _{0})} {\mathbb {B}}_\varepsilon \Xi _{(Re\lambda ,\sigma _{0})}|\varphi | (a,v) \\{} & {} \quad \le 2\displaystyle \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,\Delta _{\sigma _0}(Re\lambda ,v,v')\int _0^{a}d\mu " \,|\varphi (\mu ",v')|\displaystyle . \end{aligned}$$

This, by using Hölder’s inequality, implies that

$$\begin{aligned}{} & {} \Vert \pi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi \Vert _{\Lambda _{\sigma (\cdot ),p}}\\{} & {} \quad \le {d^2\,\varepsilon ^{-1}\over Re\lambda +\sigma _0 }\,\Vert f(\cdot )\Vert _{L^\infty (0,+\infty )}\,\Vert \sigma (\cdot )_{|supp(f(\cdot ))}\Vert _{L^\infty (0,+\infty )}\, \Vert {g(\cdot )\over \sigma (\cdot )^{1/p}}\Vert _{L^q(0,+\infty )} \,\Vert \varphi \Vert _{{\mathbb {X}}_{\sigma (\cdot ),p}}, \end{aligned}$$

which ends the second step.

Step 3. For every \(\lambda \in {{F_{-\sigma _0}}}\) and \(\varphi \in \Lambda _{\sigma (\cdot ),p}\) we have

$$\begin{aligned}{} & {} e^{-{\lambda +\sigma (v)\over v}\,\mu }\, \int _0^\mu e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\, d\mu '\\{} & {} \quad = vv'\Delta _{\sigma (\cdot )}(\lambda ,v,v')\,\big [e^{-{\lambda +\sigma (v)\over v}\,\mu }-e^{-{\lambda +\sigma (v')\over v'}\,\mu }\big ].\end{aligned}$$

Further,

$$\begin{aligned}{} & {} \Xi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi (\mu ,v)=\displaystyle {f(v)\over v}\displaystyle \int _0^\mu d\mu '\, e^{-{\lambda +\sigma (v)\over v}\,(\mu -\mu ')}\\{} & {} \quad \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,e^{-{\lambda +\sigma (v')\over v'}\,\mu '}\,\varphi (v'). \end{aligned}$$

Then, by applying Fubini’s theorem, we get

$$\begin{aligned}{} & {} \Xi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi (\mu ,v)\\{} & {} \quad =\displaystyle {f(v)\over v}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,\varphi (v')\,e^{-{\lambda +\sigma (v)\over v}\,\mu }\int _0^\mu d\mu '\, e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\\{} & {} \quad = \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,\varphi (v')\,{v'\Delta _{\sigma (\cdot )}(\lambda ,v,v')}\big [e^{-{\lambda +\sigma (v)\over v}\,\mu }-e^{-{\lambda +\sigma (v')\over v'}\,\mu }\big ]. \end{aligned}$$

Notice that

$$\begin{aligned}{} & {} |\Xi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi (\mu ,v)|\\{} & {} \quad \le \Xi _{(Re\lambda ,\sigma _{0})} {\mathbb {B}}_\varepsilon Q_{(Re\lambda ,\sigma _{0})} |\varphi |(\mu ,v) \\{} & {} \quad \le 2\displaystyle \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\,|\varphi (v')|\,{v'\Delta _{\sigma _0}(Re\lambda ,v,v')} \\{} & {} \quad \le 2d^{1/q}\displaystyle \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, {g(v')\over \sigma (v')^{1/p}}\,\Lambda _\varepsilon (v,v')\, \sigma (v')^{1/p}|\varphi (v')|\,{v'}^{1/p}\Delta _{\sigma _0}(Re\lambda ,v,v'). \end{aligned}$$

This, by using Hölder’s inequality, implies that

$$\begin{aligned}{} & {} \Vert \Xi _\lambda {\mathbb {B}}_\varepsilon Q_\lambda \varphi \Vert _{{\mathbb {X}}_{\sigma (\cdot ),p}}\\{} & {} \quad \le {2\,a^{1/p}\,d\,\varepsilon ^{-1}\over Re\lambda +\sigma _0 }\,\Vert f(\cdot )\Vert _{L^\infty (0,+\infty )}\,\Vert \sigma (\cdot )_{|supp(f(\cdot ))}\Vert _{L^\infty (0,+\infty )}\,\Vert {g(\cdot )\over \sigma (\cdot )^{1/p}}\Vert _{L^\infty (0,+\infty )} \,\Vert \varphi \Vert _{\Lambda _{\sigma (\cdot ),p}}, \end{aligned}$$

which ends the third step.

Step 4. For every \(\lambda \in {{F_{-\sigma _0}}}\) and \(\varphi \in {\mathbb {X}}_{\sigma (\cdot ),p}\) we have

$$\begin{aligned}{} & {} e^{-{\lambda +\sigma (v)\over v}\,\mu }\,e^{{\lambda +\sigma (v')\over v'}\,\mu "} \int _{\mu "}^\mu e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\, d\mu '\\{} & {} \quad = vv'\Delta _{\sigma (\cdot )}(\lambda ,v,v')\,\big [e^{-{\lambda +\sigma (v')\over v'}\,(\mu -\mu ")}-e^{-{\lambda +\sigma (v)\over v}\,(\mu -\mu ")}\big ].\end{aligned}$$

Further,

$$\begin{aligned}{} & {} \Xi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi (\mu ,v)\\{} & {} \quad =\displaystyle {f(v)\over v}\displaystyle \int _0^\mu d\mu '\, e^{-{\lambda +\sigma (v)\over v}\,(\mu -\mu ')}\int _0^{+\infty } {dv'\over v'}\, g(v')\,\Lambda _\varepsilon (v,v')\\{} & {} \quad \int _0^{\mu '}d\mu "\,e^{-{\lambda +\sigma (v')\over v'}\,(\mu '-\mu ")}\,\varphi (\mu ",v'). \end{aligned}$$

Then, by applying Fubini’s theorem, we deduce that

$$\begin{aligned}{} & {} \Xi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi (\mu ,v)=\displaystyle {f(v)\over v}\displaystyle \int _0^{+\infty } {dv'\over v'}\, g(v')\,\Lambda _\varepsilon (v,v')\,e^{-{\lambda +\sigma (v)\over v}\,\mu }\\{} & {} \qquad \int _0^\mu d\mu "\, e^{{\lambda +\sigma (v')\over v'}\,\mu "}\varphi (\mu ",v')\\{} & {} \qquad \times \,\displaystyle \int _{\mu "}^\mu d\mu '\, e^{-\big ({\lambda +\sigma (v')\over v'}-{\lambda +\sigma (v)\over v}\big )\,\mu '}\\{} & {} \quad = \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\int _0^\mu d\mu "\,\varphi (\mu ",v')\,{\Delta _{\sigma (\cdot )}(\lambda ,v,v')}\\{} & {} \qquad \times \,\big [e^{-{\lambda +\sigma (v')\over v'}\,(\mu -\mu ")}-e^{-{\lambda +\sigma (v)\over v}\,(\mu -\mu ")}\big ]. \end{aligned}$$

Notice that

$$\begin{aligned}&|\Xi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi (\mu ,v)|\\&\quad \le \Xi _{(Re\lambda ,\sigma _{0})} {\mathbb {B}}_\varepsilon \Xi _{(Re\lambda ,\sigma _{0})} |\varphi |(\mu ,v) \\&\quad \le 2\displaystyle \displaystyle {f(v)}\displaystyle \int _0^{+\infty } dv'\, g(v')\,\Lambda _\varepsilon (v,v')\int _0^\mu d\mu "\,|\varphi (\mu ",v')|\,{\Delta _{\sigma _0}(Re\lambda ,v,v')} \\&\quad = 2\displaystyle \displaystyle {f(v)}\int _0^\mu d\mu "\,\displaystyle \int _0^{+\infty } dv'\, {g(v')\over \sigma (v')^{1/p}}\,\Lambda _\varepsilon (v,v')\,\sigma (v')^{1/p}|\varphi (\mu ",v')|\,{\Delta _{\sigma _0}(Re\lambda ,v,v')} \end{aligned}$$

by using Fubini’s theorem, again. This, by using Hölder’s inequality, amounts to

$$\begin{aligned}\begin{array}{c} \Vert \Xi _\lambda {\mathbb {B}}_\varepsilon \Xi _\lambda \varphi \Vert _{{\mathbb {X}}_{\sigma (\cdot ),p}}\\ \le {2\,a^{1/p}\,d^{1/p}\,\varepsilon ^{-1}\over Re\lambda +\sigma _0 }\,\Vert f(\cdot )\Vert _{L^\infty (0,+\infty )}\,\Vert \sigma (\cdot )_{|supp(f(\cdot ))}\Vert ^{1/p}_{L^\infty (0,+\infty )}\,\Vert {g(\cdot )\over \sigma (\cdot )^{1/p}}\Vert _{L^\infty (0,+\infty )} \,\Vert \varphi \Vert _{{\mathbb {X}}_{\sigma (\cdot ),p}},\end{array}\end{aligned}$$

which proves the forth step and finishes the proof of Lemma 4.3. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megdiche, H. A new generation criterion theorem for \(C_0\)-semigroups implying a generalization of Kaiser–Weis–Batty’s perturbation theorem. Semigroup Forum 107, 491–524 (2023). https://doi.org/10.1007/s00233-023-10391-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-023-10391-w

Keywords

Navigation