Skip to main content
Log in

Analysis of Fabrication Process on Direct Edge Sealing with Microwave for Vacuum Glazing

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

According to a recent comprehensive study on window systems, windows account for approximately 60% of a building’s total energy loss. In this regard, much research is being conducted to reduce energy loss through windows, among them, vacuum glazing maximizes the insulation performance by sealing between two sheets of glass with a vacuum. In this study, proposes a novel strategy for fabricating vacuum glazing using microwave heating in vacuum pressure and direct glass edge sealing. By applying a process using microwaves, the energy used in the vacuum glazing fabrication process is minimized, and the structural strength of the vacuum glazing is improved by directly sealing the glass. In order to prevent arc discharge that can occur when microwaves are applied in vacuum pressure, microwave power was set as a variable, and heating experiments were conducted accordingly. The experiment enabled the analysis of the relationship between temperature and pressure change according to the power, and accordingly, a vacuum glass sample with direct sealing was fabricated. The fabricated vacuum glazing was tested for thermal transmittance (U-value) in single and double layers and confirmed to be 3.5 W/m2 K and 1.6 W/m2 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., & Hart, R. (2012). Fenestration of today and tomorrow: A state-of-the-art review and future. Research opportunities. The art of writing a scientific article. Solar Energy Materials and Solar Cells, 96, 1–28. https://doi.org/10.1016/j.solmat.2011.08.010

    Article  CAS  Google Scholar 

  2. Ghosh, S. S., Biswas, P. K., & Neogi, S. (2014). Effect of solar radiation at various incident angles on transparent conducting antimony doped indium oxide (IAO) film developed by sol–gel method on glass substrate as heat absorbing window glass fenestration. Solar Energy, 109, 54–60. https://doi.org/10.1016/j.solener.2014.08.020

    Article  ADS  CAS  Google Scholar 

  3. Cuce, E., & Riffat, S. (2015). A state-of-the-art review on innovative glazing technologies. Renewable and Sustainable Energy Reviews, 41, 695–714. https://doi.org/10.1016/j.rser.2014.08.084

    Article  Google Scholar 

  4. Leftheriotis, G., & Yianoulis, P. (1999). Characterisation and stability of low-emittance multiple coatings for glazing applications. Solar Energy Materials and Solar Cells, 58(2), 185–197. https://doi.org/10.1016/S0927-0248(99)00202-5

    Article  CAS  Google Scholar 

  5. Collins, R. E., & Simko, T. M. (1998). Current status of the science and technology of vacuum glazing. Solar Energy, 62(3), 189–213. https://doi.org/10.1016/S0038-092X(98)00007-3

    Article  ADS  Google Scholar 

  6. Eames, P. C. (2008). Vacuum glazing: Current performance and future prospects. Vacuum, 82(7), 717–722. https://doi.org/10.1016/j.vacuum.2007.10.017

    Article  ADS  CAS  Google Scholar 

  7. Zhang, S., Li, C., Miao, H., & He, Q. (2019). The influence of welding process parameters on pore formation in pulsed laser-welded vacuum plate glazing. Materials, 12(11), 1790. https://doi.org/10.3390/ma12111790

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park, J. S., Oh, M. H., & Lee, C. S. (2019). Thermal performance optimization and experimental evaluation of vacuum-glazed windows manufactured via the in-vacuum method. Energies, 12(19), 3634. https://doi.org/10.3390/en12193634

    Article  CAS  Google Scholar 

  9. Memon, S., Fang, Y., & Eames, P. C. (2019). The influence of low-temperature surface induction on evacuation, pump-out hole sealing and thermal performance of composite edge-sealed vacuum insulated glazing. Renewable Energy, 135, 450–464. https://doi.org/10.1016/j.renene.2018.12.025

    Article  CAS  Google Scholar 

  10. Memon, S., Farukh, F., Eames, P. C., & Silberschmidt, V. V. (2015). A new low-temperature hermetic composite edge seal for the fabrication of triple vacuum glazing. Vacuum, 120, 73–82. https://doi.org/10.1016/j.vacuum.2015.06.024

    Article  ADS  CAS  Google Scholar 

  11. Miao, H., Shan, X., Zhang, J., Sun, J., & Wang, H. (2015). Effect of sealing temperature on the sealing edge performance of vacuum glazing. Vacuum, 116, 7–12. https://doi.org/10.1016/j.vacuum.2015.02.009

    Article  ADS  CAS  Google Scholar 

  12. Knechtel, R., Wiemer, M., & Frömel, J. (2006). Wafer level encapsulation of microsystems using glass frit bonding. Microsystem technologies, 12, 468–472. https://doi.org/10.1007/s00542-005-0036-4

    Article  CAS  Google Scholar 

  13. Memon, S., & Eames, P. C. (2020). Design and development of lead-free glass-metallic vacuum materials for the construction and thermal performance of smart fusion edge-sealed vacuum glazing. Energy and Buildings, 227(15), 110430. https://doi.org/10.1016/j.enbuild.2020.110430

    Article  Google Scholar 

  14. Kim, Y. S., & Jeon, E. S. (2015). Establishment of regression model for estimating shape parameters for vacuum-sealed glass panel using design of experiments. Vacuum, 121, 113–119. https://doi.org/10.1016/j.vacuum.2015.08.007

    Article  ADS  CAS  Google Scholar 

  15. Kim, Y. S., & Jeon, E. S. (2018). Using a hydrogen gas torch to seal edges of vacuum glazing panels and analysis of the related characteristic strength according to the sealed edge shapes. Vacuum, 149, 262–269. https://doi.org/10.1016/j.vacuum.2018.01.005

    Article  ADS  CAS  Google Scholar 

  16. Fang, Y., Hyde, T. J., Arya, F., Hewitt, N., Eames, P. C., Norton, B., & Miller, S. (2014). Indium alloy-sealed vacuum glazing development and context. Renewable and Sustainable Energy Reviews, 37, 480–501. https://doi.org/10.1016/j.rser.2014.05.029

    Article  CAS  Google Scholar 

  17. Shi, Y., Xi, X., Zhao, G., Zhang, Y., Cai, D., Zhang, J., Xu, H., & Zhang, R. (2022). Sealing performance of tempered vacuum glazing with silver oxide system low melting solder. Materials Chemistry and Physics, 275, 125202. https://doi.org/10.1016/j.matchemphys.2021.125202

    Article  CAS  Google Scholar 

  18. Zhu, H., He, J., Hong, T., Yang, Q., Wu, Y., Yang, Y., & Huang, K. (2018). A rotary radiation structure for microwave heating uniformity improvement. Applied Thermal Engineering, 141, 648–658. https://doi.org/10.1016/j.applthermaleng.2018.05.122

    Article  Google Scholar 

  19. Chen, Y., Zhang, X., Luo, Z., Sun, J., Li, L., Yin, X., Li, J., & Xu, Y. (2021). Effects of inside-out heat-shock via microwave on the fruit softening and quality of persimmon during postharvest storage. Food Chemistry, 349, 129161. https://doi.org/10.1016/j.foodchem.2021.129161

    Article  CAS  PubMed  Google Scholar 

  20. Zhan, L., Yang, Y., Li, W., Wang, G., Li, Y., & Wang, N. (2020). Drying kinetics and mechanical properties of low temperature microwave dried cashmere fibers. Textile Research Journal, 90(23–24), 2745–2754. https://doi.org/10.1177/0040517520929361

    Article  CAS  Google Scholar 

  21. Amini, A., Latifi, M., & Chaouki, J. (2021). Electrification of materials processing via microwave irradiation: A review of mechanism and applications. Applied Thermal Engineering, 193, 117003. https://doi.org/10.1016/j.applthermaleng.2021.117003

    Article  CAS  Google Scholar 

  22. Kim, J. K., Kim, Y. S., & Jeon, E. S. (2019). Experimental study on flat-glass heating and edge-sealing using multiple microwave sources. Energies, 12(22), 4359. https://doi.org/10.3390/en12224359

    Article  CAS  Google Scholar 

  23. Kim, J. K., Kim, Y. S., & Jeon, E. S. (2019). Optimization of glass edge sealing process using microwaves for fabrication of vacuum glazing. Applied Sciences, 9(5), 874. https://doi.org/10.3390/app9050874

    Article  CAS  Google Scholar 

  24. Shen, X., Feng, G. Y., Jing, S., Han, J. H., Li, Y. G., & Liu, K. (2019). Damage characteristics of laser plasma shock wave on rear surface of fused silica glass. Chinese Physics B, 28, 085202. https://doi.org/10.1088/1674-1056/28/8/085202

    Article  ADS  CAS  Google Scholar 

  25. Drouzas, A. E., Tsami, E., & Saravacos, G. D. (1999). Microwave/vacuum drying of model fruit gels. Journal of Food Engineering, 39(2), 117–122. https://doi.org/10.1016/S0260-8774(98)00133-2

    Article  Google Scholar 

  26. Sunjka, P. S., Rennie, T. J., Beaudry, C., & Raghavan, G. S. V. (2004). Microwave-convective and microwave-vacuum drying of cranberries: a comparative study. Drying Technology, 22(5), 1217–1231. https://doi.org/10.1081/DRT-120038588

    Article  Google Scholar 

  27. Cui, Z. W., Xu, S. Y., & Sun, D. W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Drying Technology, 22(3), 563–575. https://doi.org/10.1081/DRT-120030001

    Article  Google Scholar 

  28. Cui, Z. W., Xu, S. Y., Sun, D. W., & Chen, W. (2005). Temperature changes during microwave-vacuum drying of sliced carrots. Drying Technology, 23(5), 1057–1074. https://doi.org/10.1081/DRT-200059136

    Article  Google Scholar 

  29. Gould, J. W., Perry, J. T., Kenyon, E. M., (1972). Microwave application to freeze dehydration preliminary evaluation of a 2450MHz system. United States Army Natick Laboratories. Technical report 72-24-FL. https://discover.dtic.mil

  30. Arsem, H. B., & Ma, Y. H. (1985). Aerosol formation during the microwave freeze dehydration of beef. Biotechnology Progress, 1(2), 104–110. https://doi.org/10.1002/btpr.5420010207

    Article  CAS  PubMed  Google Scholar 

  31. Wu, H., Grabarnik, S., Emadi, A., de Graaf, G., & Wolffenbuttel, R. F. (2009). A review of MEMS-based micro hotplates for gas sensing applications. Journal of Micromechanics and Microengineering, 19(7), 074022. https://doi.org/10.1088/0960-1317/19/7/074022

    Article  ADS  CAS  Google Scholar 

  32. Kim, J. K., & Jeon, E. S. (2011). The pillar design variable determination up of the vacuum glazing panel using FEM. Journal of the Semiconductor & Display Technology, 10(4), 101–106.

    Google Scholar 

  33. ASTM. (2021). ASTM E1417/E1417M-21, Standard Practice for Liquid Penetrant Testing. ASTM International. 1–12. https://doi.org/10.1520/E1417_E1417M-21

  34. Ks, B. (2021). KS B 0816:2021, Method for liquid penetrant testing and classification of the penetrant indication. Korean Standards Association., 1–17. https://www.kssn.net

  35. ISO. (2014). ISO 9869–1: 2014 Thermal insulation–Building elements–In-situ measurement of thermal resistance and thermal transmittance–Part 1: Heat flow meter method. International Organization for Standardization. https://www.iso.org/standard/59697.html

  36. Katsura, T., Memon, S., Radwan, A., Nakamura, M., & Nagano, K. (2020). Thermal performance analysis of a new structured-core translucent vacuum insulation panel in comparison to vacuum glazing: Experimental and theoretically validated analyses. Solar Energy, 199, 326–346. https://doi.org/10.1016/j.solener.2020.02.030

    Article  ADS  Google Scholar 

  37. Shi, Y., Xi, X., Zhang, Y., Xu, H., Zhang, J., & Zhang, R. (2021). Prediction and analysis of the thermal performance of composite vacuum glazing. Energies, 14(18), 5769. https://doi.org/10.3390/en14185769

    Article  CAS  Google Scholar 

  38. Kurniawan, H., Alapati, S., & Che, W. S. (2015). Effect of mode stirrers in a multimode microwave heating applicator with the conveyor belt. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(1), 31–36. https://doi.org/10.1007/s40684-015-0004-0

    Article  Google Scholar 

  39. Li, H., Zhao, Z., Xiouras, C., Stefanidis, G. D., Li, X., & Gao, X. (2019). Fundamentals and applications of microwave heating to chemicals separation processes. Renewable and Sustainable Energy Reviews, 114, 109316. https://doi.org/10.1016/j.rser.2019.109316

    Article  CAS  Google Scholar 

  40. Bermúdez, J. M., Beneroso, D., Rey-Raap, N., Arenillas, A., & Menéndez, J. A. (2015). Energy consumption estimation in the scaling-up of microwave heating processes. Chemical Engineering and Processing: Process Intensification, 95, 1–8. https://doi.org/10.1016/j.cep.2015.05.001

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

JK: Conceptualization, Methodology, Experimentation, data Curation, Analysis, Validation, Writing-original draft preparation, Writing-review and editing; YS: Analysis, formatting, Writing-Review and Editing; ES Conceptualization, Methodology, Writing-review and editing, Supervision. All authors read and agreed upon the final version of the manuscript.

Corresponding authors

Correspondence to Youngshin Kim or Euysik Jeon.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, Y. & Jeon, E. Analysis of Fabrication Process on Direct Edge Sealing with Microwave for Vacuum Glazing. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 491–500 (2024). https://doi.org/10.1007/s40684-023-00571-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00571-y

Keywords

Navigation